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1. Introduction

We consider the equation

~AY oz =Eyp, veR? d>2 E>0, (1.1)
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where A is the Laplacian, v is a scalar potential such that

v e L®RY), suppv C D,

D is an open bounded domain in RY, (1.2)

Eq. (1.1) can be considered as the quantum mechanical Schrodinger equation at fixed
energy F.

Eq. (1.1) can also be considered as the acoustic equation at fixed frequency w. In this
setting

w2 W2

E= (=), v(@)=(1-n*@)(=), (1.3)
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where ¢q is a reference sound speed, n(x) is a scalar index of refraction.
For Eq. (1.1) we consider the classical scattering solutions ¢ continuous and bounded
on R? and specified by the following asymptotics as |z| — oo:

, ilklz] 1
+ _ _ikx €
v (z, k) =e -l—c(cl,|l<:\)—|gg|(d71)/2 (k, |l€|| |)+O(—|x|(d+1)/2)’

zeRY kEeRY k2 =E, c(d,|k]) = —mi(—2mi)d=D/2|k|(d=3)/2) (1.4)
where a priori unknown function f = f(k,1), k,l € R?, k? =12 = E, arising in (1.4) is
the classical scattering amplitude for (1.1).

In order to find )" and f from v one can use the following Lippmann—Schwinger
integral equation (1.5) and formula (1.7) (see, e.g., [4,10]):

W (k) = e+ / G+ (@ — y, k() (. k)dy, (1.5)
z§1d£ o .
G (. k) % —(2m) / g = G lal k). (1.6)

where z € R?, k € R%, k? = E, and G(T depends also on d;

£l = (2) [ e oy)0 v, W) 7)
D
where k e RY, [ R k2 =12 =FE
We recall that 1" describes scattering of the incident plane waves ¢*** on the po-

tential v. And the second term of the right-hand side of (1.4) describes the scattered
spherical waves.

ikx

In addition to 1™, we consider also the function R™ describing scattering of spherical
waves generated by point sources. The function R = R¥(z,2', E), x € R, 2’ € R?, can
be defined as the Schwartz kernel of the standard resolvent (—A +v — E —40)~!. Note
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