

Contents lists available at ScienceDirect

Bulletin des Sciences Mathématiques

www.elsevier.com/locate/bulsci

Pseudodifferential extensions and adiabatic deformation of smooth groupoid actions

Claire Debord ^{a,*}, Georges Skandalis ^b

^a Laboratoire de Mathématiques, UMR 6620 - CNRS, Université Blaise Pascal,
 Campus des Cézeaux, BP 80026, F-63171 Aubière cedex, France
 ^b Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC
 Paris 06, CNRS, IMJ-PRG, UFR de Mathématiques, CP 7012 - Bâtiment Sophie
 Germain, 5 rue Thomas Mann, 75205 Paris cedex 13, France

ARTICLE INFO

Article history: Received 30 October 2014 Available online 9 December 2014

MSC: primary 58H05 secondary 46L89, 58J22

Keywords: Noncommutative geometry Groupoids Pseudodifferential calculus

ABSTRACT

The adiabatic groupoid \mathcal{G}_{ad} of a smooth groupoid \mathcal{G} is a deformation relating \mathcal{G} with its algebroid. In a previous work, we constructed a natural action of \mathbb{R} on the C*-algebra of zero order pseudodifferential operators on \mathcal{G} and identified the crossed product with a natural ideal $J(\mathcal{G})$ of $C^*(\mathcal{G}_{ad})$. In the present paper we show that $C^*(\mathcal{G}_{ad})$ itself is a pseudodifferential extension of this crossed product in a sense introduced by Saad Baaj. Let us point out that we prove our results in a slightly more general situation: the smooth groupoid \mathcal{G} is assumed to act on a C*-algebra A. We construct in this generalized setting the extension of order 0 pseudodifferential operators $\Psi(A,\mathcal{G})$ of the associated crossed product $A \rtimes \mathcal{G}$. We show that \mathbb{R} acts naturally on $\Psi(A,\mathcal{G})$ and identify the crossed product of A by the action of the adiabatic groupoid \mathcal{G}_{ad} with an extension of the crossed product $\Psi(A,\mathcal{G}) \times \mathbb{R}$. Note that our construction of $\Psi(A,\mathcal{G})$ unifies the ones of Connes (case $A = \mathbb{C}$) and of Baaj (\mathcal{G} is a Lie group).

 $\ensuremath{{}^{\odot}}$ 2014 Elsevier Masson SAS. All rights reserved.

 $\label{lem:email$

^{*} Corresponding author.

1. Introduction

Alain Connes in [7, Chapter VIII] pointed out that smooth groupoids offer a perfect setting for index theory. Since then, this fact has been explored and exploited by Connes as well as many other authors, in many geometric situations (see [11] for a review).

In [10, Section II.5], A. Connes constructed a beautiful groupoid, which he called the "tangent groupoid", that interpolates between the pair groupoid $M \times M$ of a (smooth, compact) manifold M and the tangent bundle TM of M. He showed that this groupoid describes the analytic index on M in a way not involving (pseudo)differential operators at all, and gave a proof of the Atiyah–Singer Index Theorem based on this groupoid.

This idea of a deformation groupoid was then used in [15, Section III], and extended in [22,23] to the general case of a smooth groupoid, where the authors associated to every smooth groupoid \mathcal{G} an adiabatic groupoid \mathcal{G}_{ad} , which is obtained by applying the "deformation to the normal cone" construction to the inclusion $\mathcal{G}^{(0)} \to \mathcal{G}$ of the unit space of \mathcal{G} into \mathcal{G} . Moreover, it was shown in [22, Théorème 2.1] that this adiabatic groupoid still describes the analytic index of the groupoid \mathcal{G} in this generalized situation.

In [12], we further explored the relationship between pseudodifferential calculus on \mathcal{G} and its adiabatic deformation \mathcal{G}_{ad} . An ideal $J(\mathcal{G}) \subset C^*(\mathcal{G}_{ad})$ which sits in an exact sequence $0 \to J(\mathcal{G}) \to C^*(\mathcal{G}_{ad}) \to C(\mathcal{G}^{(0)}) \to 0$ plays a crucial role in our constructions. We construct a canonical Morita equivalence between the algebra $\Psi^*(\mathcal{G})$ of order 0 pseudodifferential operators on \mathcal{G} and the crossed product $J(\mathcal{G}) \rtimes \mathbb{R}_+^*$ of $J(\mathcal{G})$ by the natural action of \mathbb{R}_+^* .

It appeared that $J(\mathcal{G})$ is canonically isomorphic to the crossed product $\Psi^*(\mathcal{G}) \rtimes \mathbb{R}$ associated with a natural action of \mathbb{R} on the algebra $\Psi^*(\mathcal{G})$. A natural question is then: can one recognize the C^* -algebra $C^*(\mathcal{G}_{ad})$ in these terms?

In the present paper, we answer this question, thanks to [3,4], where Baaj constructed an extension of pseudodifferential operators of order 0 of the crossed product of a C^* -algebra A by the action of a Lie group H – with Lie algebra \mathfrak{H} . Denote by $S^*\mathfrak{H}$ the sphere in \mathfrak{H}^* . Baaj's exact sequence reads

$$0 \to A \rtimes H \to \Psi_0^*(A, H) \stackrel{\sigma}{\longrightarrow} C(S^*\mathfrak{H}) \otimes A \to 0.$$

Let $\mu: C(\mathcal{G}^{(0)}) \to \Psi^*(\mathcal{G})$ be the inclusion by multiplication operators. In the present paper, we construct a commutative diagram, whose first line is Baaj's exact sequence:

$$0 \longrightarrow \Psi^{*}(\mathcal{G}) \rtimes \mathbb{R} \longrightarrow \Psi_{0}^{*}(\Psi^{*}(\mathcal{G}), \mathbb{R}) \stackrel{\sigma}{\longrightarrow} \Psi^{*}(\mathcal{G}) \oplus \Psi^{*}(\mathcal{G}) \longrightarrow 0$$

$$\uparrow \simeq \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad$$

where $\mu_0(f) = (\mu(f), 0)$.

Download English Version:

https://daneshyari.com/en/article/4668755

Download Persian Version:

https://daneshyari.com/article/4668755

Daneshyari.com