

Contents lists available at ScienceDirect

Bulletin des Sciences Mathématiques

www.elsevier.com/locate/bulsci

Measure preserving homeomorphism of the Hilbert cube embedding the pseudo-boundary into the pseudo-interior $\stackrel{\text{\tiny{free}}}{\rightarrow}$

霐

Michał Morayne^{a,*}, Maciej Pietroń^b

 ^a Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
^b Institute of Mathematics, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

ARTICLE INFO

Article history: Received 6 November 2013 Available online 11 March 2014

MSC: 28A65 54C05

Keywords: Hilbert cube Measure-preserving mapping Pseudo-interior Pseudo-boundary

ABSTRACT

We prove that the pseudo-boundary B(Q) of the Hilbert cube Q can be embedded into the pseudo-interior s of Q by a homeomorphism of Q that preserves the product Lebesgue measure.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

G. Cantor showed that for two countable and dense subsets A, B of the real line \mathbb{R} there exists a homeomorphism h of the real line transforming A onto B. This property of \mathbb{R} and any other topological space is called *countable dense homogeneity*. Countable

 $\label{eq:http://dx.doi.org/10.1016/j.bulsci.2014.03.001 \\ 0007\text{-}4497/ © 2014$ Elsevier Masson SAS. All rights reserved.

 $^{^{*}}$ The work has been partially financed by NCN means granted by decision DEC-2011/01/B/ST1/01439. * Corresponding author.

E-mail addresses: michal.morayne@pwr.wroc.pl (M. Morayne), Maciej.Pietron@math.uni.wroc.pl (M. Pietroń).

dense homogeneity of all Euclidean spaces \mathbb{R}^n , $n \in \mathbb{N}$, was showed by L.E.J. Brouwer [4]. Later Brouwer's result was generalized to manifolds by R.B. Bennett [2]. M. Fort [7] proved that also the Hilbert cube Q is countable dense homogeneous. P. Franklin [8] showed that a homeomorphism in Cantor's result can be an analytic function. (A bit weaker result with a diffeomorphism in the conclusion was independently obtained by Z. Zalcwasser [15].) M. Morayne [11] showed that a homeomorphism in Brouwer's result for \mathbb{R}^n , n > 1, can be an analytic diffeomorphism preserving the *n*-dimensional Lebesgue measure and for the *n*'s even it can be an analytic diffeomorphism of the canonical complex space $\mathbb{C}^{\frac{n}{2}}$. This last result was later independently proved by J.-P. Rosay and W. Rudin [14]. M. Pietroń [13] showed that also a homeomorphism in Fort's result can preserve the product Lebesgue measure on Q.

Basic tools for investigating the topology of infinite dimensional spaces, including the Hilbert cube Q, are so called \mathcal{Z} -sets and their countable unions \mathcal{Z}_{σ} -sets. (For a metric space (X,d) we say that $A \subseteq X$ is a \mathcal{Z} -set if for an arbitrary $\varepsilon > 0$ and an arbitrary continuous mapping $f: Q \to X$ there exists another continuous mapping $g: Q \to X \setminus A$ such that $\sup\{d(f(a), g(a)): a \in Q\} < \varepsilon$.) Two subsets A, B of a topological space X are topologically equivalent (ambiently homeomorphic) in X if there exists a homeomorphism $f: X \to X$ of X onto X such that f[A] = B. Topological equivalence of particular \mathcal{Z}_{σ} -sets in the Hilbert cube is often an important question. Always an important example of a \mathcal{Z}_{σ} -set is a countable dense subset of X. Investigating the topological equivalence of all such sets in a space X, i.e. the countable dense homogeneity of X, was shortly described for various X's in the previous paragraphs (see also [5,9]). For the Hilbert cube another very important \mathcal{Z}_{σ} -set is its pseudo-boundary B(Q). It is known that any \mathcal{Z}_{σ} -set can be embedded into the pseudo-interior s of the Hilbert cube by a homeomorphism of the whole Hilbert cube that is arbitrarily close to the identity. It is especially useful for the pseudo-boundary of the Hilbert cube (which is a \mathcal{Z}_{σ} -set). We will prove that such a homeomorphism transforming B(Q) into s can additionally preserve the product Lebesgue measure. How far this result can be generalized replacing the pseudo-boundary by other \mathcal{Z}_{σ} -sets we do not know.

2. Definitions, notation, auxiliary results

The main space considered in this article is the *Hilbert cube* $Q = [0, 1]^{\mathbb{N}}$ with the natural product topology.

Let (X, d) be any metric space where the metric d is bounded. For $A, B \subseteq X$ let

$$\hat{d}(A,B) = \inf \{ d(a,b) \colon a \in A, b \in B \}.$$

With some abuse of notation for $A \subseteq X$ and $x \in X$ we shall write:

$$\hat{d}(x,A) = \hat{d}(\{x\},A).$$

Download English Version:

https://daneshyari.com/en/article/4668764

Download Persian Version:

https://daneshyari.com/article/4668764

Daneshyari.com