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0. Introduction

Let k be an algebraically closed field and Λ a finite dimensional k-algebra. We denote 
by modΛ the category of finitely presented Λ-modules and by projΛ the full subcategory 
of finitely generated projective Λ-modules.

The Krull–Gabriel dimension of the representation theory of Λ is an invariant first 
studied by Geigle [11]. For this invariant one considers the abelian category C =
Ab(modΛ) of finitely presented functors modΛ → Ab into the category of abelian 
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groups. The Krull–Gabriel dimension KGdim C of C is by definition the smallest integer 
n such that C admits a filtration by Serre subcategories

0 = C−1 ⊆ C0 ⊆ . . . ⊆ Cn = C,

where Ci/Ci−1 is the full subcategory of all objects of finite length in C/Ci−1.
We have KGdim C = 0 if and only if Λ is of finite representation type by a classical 

result of Auslander [1], and KGdim C �= 1 by a result of Herzog [14] and Krause [16]. In 
his thesis [11], Geigle proved that KGdim C = 2, when Λ is tame hereditary.

In this work we investigate the category of perfect complexes which is by definition the 
bounded derived category Db(projΛ). We compute the Krull–Gabriel dimension of the 
abelian category Ab(Db(projΛ)), when Λ is derived discrete in the sense of Vossieck [19]. 
The main result is the following.

Main Theorem. Let Λ be a finite dimensional k-algebra.

(1) If Λ is derived discrete and piecewise hereditary, then

KGdim Ab
(
Db(projΛ)

)
= 0.

(2) If Λ is derived discrete and not piecewise hereditary, then

KGdim Ab
(
Db(projΛ)

)
=

{
1 if gl.dimΛ = ∞,

2 if gl.dimΛ < ∞.

(3) If Λ is not derived discrete, then

KGdim Ab
(
Db(projΛ)

)
≥ 2.

The rest of this note is devoted to proving this theorem. For an elementary description 
of the Krull–Gabriel dimension, see Proposition 2.2.

Conventions. By Z, N, and N+, we denote the sets of integers, nonnegative integers, and 
positive integers, respectively. For i, j ∈ Z, set

[i, j] := {l ∈ Z | i ≤ l ≤ j}.

Furthermore, [i, ∞) := {l ∈ Z | i ≤ l} and (−∞, j] := {l ∈ Z | l ≤ j}.

1. Derived discrete algebras

Let Λ be a finite dimensional k-algebra. The algebra Λ is called derived discrete if for 
each sequence (hn)n∈Z of nonnegative integers there are only finitely many isomorphism 
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