

Available online at www.sciencedirect.com

BULLETIN DES Sciences Mathématioues

Bull. Sci. math. 138 (2014) 236-252

www.elsevier.com/locate/bulsci

The principal frequency of Δ_{∞} as a limit of Rayleigh quotients involving Luxemburg norms

Marian Bocea^a. Mihai Mihăilescu^{b,c,*}

^a Department of Mathematics and Statistics, Loyola University Chicago, 1032 W. Sheridan Road, Chicago, IL 60660, USA

^b Department of Mathematics, University of Craiova, 200585 Craiova, Romania ^c "Simion Stoilow" Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania

Received 15 May 2013

Available online 14 June 2013

Abstract

The asymptotic behavior of Rayleigh quotients involving both Luxemburg norms and modulars in the variable exponent Lebesgue space $L^{p(\cdot)}$ is studied as $p(\cdot) \to \infty$. In a particular case, we recover a wellknown result of Juutinen, Lindqvist and Manfredi regarding the limit, as $p \to \infty$ of the minima of Rayleigh quotients associated to the eigenvalue problem for the *p*-Laplacian.

© 2013 Elsevier Masson SAS. All rights reserved.

MSC: 35D30; 35P30; 46E30; 49J40; 49J45

Keywords: Luxemburg norm; Principal frequency; Rayleigh quotient; Variable exponent Lebesgue and Sobolev spaces

1. Introduction and main results

Let $\Omega \subset \mathbb{R}^N$ be an open and bounded set with smooth boundary. Throughout this paper we denote by $\mathcal{P}(\Omega)$ the class of variable exponents $p: \Omega \to (1, \infty)$ that are continuous and satisfy $p^- := \inf_{x \in \Omega} p(x) > 1$ and $p^+ := \sup_{x \in \Omega} p(x) < +\infty$. Let $\{p_n\} \subset \mathcal{P}(\Omega)$ be a sequence of functions in $C^1(\Omega)$ such that

 $p_n^- \to \infty$ as $n \to \infty$, (1.1)

there exists a real constant $\beta > 1$ such that $p_n^+ \leq \beta p_n^-$ for all $n \in \mathbb{N}$, (1.2)

Corresponding author at: Department of Mathematics, University of Craiova, 200585 Craiova, Romania. E-mail addresses: mbocea@luc.edu (M. Bocea), mmihailes@yahoo.com (M. Mihăilescu).

^{0007-4497/\$ -} see front matter © 2013 Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.bulsci.2013.06.001

and

$$\lim_{n \to \infty} \frac{|\nabla p_n(x)|}{p_n(x)^2} = 0, \quad \forall x \in \Omega.$$
(1.3)

Note that (1.2) implies in particular that

$$p_n \to \infty$$
 uniformly in Ω . (1.4)

We also remark that both (1.2) and (1.3) hold if we assume, for example, that there exists a function $\xi \in C(\Omega)$ such that

$$\nabla \ln p_n(\cdot) \to \xi$$
 uniformly in Ω . (1.5)

Conditions of type (1.4) and (1.5) were initially introduced in [11] in the context of a study of the asymptotic behavior of $p_n(\cdot)$ -harmonic functions as $p_n \to \infty$, while conditions such as (1.1) and (1.2) appear initially in [1].

In what follows $|v|_{q(\cdot)}$ will denote the Luxemburg norm of v in the variable exponent Lebesgue space $L^{q(\cdot)}(\Omega; \mathbb{R}^m)$, $m \in \mathbb{N}$. We refer to Section 2 of the paper for the precise definitions, as well as for more details on variable exponent Lebesgue and Sobolev spaces.

Definition 1. We say that $p \in \mathcal{P}^{\log}(\Omega)$ if $p \in \mathcal{P}(\Omega)$ and, in addition, p satisfies the global log-Hölder continuity condition: there exist $c_1, c_2 > 0$, and $p_{\infty} \in \mathbb{R}$ such that

$$|p(x) - p(y)| \leq \frac{c_1}{\ln(e+1/|x-y|)}$$
 for all $x, y \in \Omega$,

and

$$|p(x) - p_{\infty}| \leq \frac{c_2}{\ln(e+|x|)}, \text{ for all } x \in \Omega.$$

Remark 1. Typical examples of sequences of functions $p_n \in \mathcal{P}^{\log}(\Omega)$ that satisfy our assumptions (1.1), (1.2), and (1.3) are: $p_n(x) = n$, $p_n(x) = p(x) + n$, $p_n(x) = np(x/n)$, and $p_n(x) = np(x)$, where $p \in \mathcal{P}^{\log}(\Omega)$. These examples are taken from [11]. In particular, (1.5) also holds, with $\xi \equiv 0$ in all but the last example, in which case one has $\xi = \nabla \ln p$.

Let $\delta : \Omega \to [0, \infty)$ be the distance function to $\partial \Omega$, given by $\delta(x) := \operatorname{dist}(x, \partial \Omega) = \inf_{y \in \partial \Omega} |x - y|$. It is known (see Lemma 1.5 and Section 2 in [9]) that if one defines

$$\Lambda_{\infty} := \inf \left\{ \frac{\|\nabla \varphi\|_{L^{\infty}(\Omega)}}{\|\varphi\|_{L^{\infty}(\Omega)}} : \varphi \in W_0^{1,\infty}(\Omega) \setminus \{0\} \right\},\tag{1.6}$$

then the infimum above is always achieved at δ , that is,

$$\Lambda_{\infty} = \frac{\|\nabla \delta\|_{L^{\infty}(\Omega)}}{\|\delta\|_{L^{\infty}(\Omega)}} = \frac{1}{\max\{\operatorname{dist}(x, \partial \Omega): x \in \Omega\}}$$

and that we have

$$\lim_{p \to \infty} \inf \left\{ \frac{\|\nabla \varphi\|_{L^p(\Omega)}}{\|\varphi\|_{L^p(\Omega)}} \colon \varphi \in W_0^{1,p}(\Omega) \setminus \{0\} \right\} = \Lambda_{\infty}.$$
(1.7)

This last identity justifies the name of "principal frequency" (of Δ_{∞}) given in [9] to Λ_{∞} . Here, Δ_{∞} stands for the ∞ -Laplace operator, which on smooth functions u is defined by Download English Version:

https://daneshyari.com/en/article/4668841

Download Persian Version:

https://daneshyari.com/article/4668841

Daneshyari.com