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Abstract

The asymptotic behavior of Rayleigh quotients involving both Luxemburg norms and modulars in the
variable exponent Lebesgue space Lp(·) is studied as p(·) → ∞. In a particular case, we recover a well-
known result of Juutinen, Lindqvist and Manfredi regarding the limit, as p → ∞ of the minima of Rayleigh
quotients associated to the eigenvalue problem for the p-Laplacian.
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1. Introduction and main results

Let Ω ⊂ R
N be an open and bounded set with smooth boundary. Throughout this paper we

denote by P(Ω) the class of variable exponents p : Ω → (1,∞) that are continuous and satisfy
p− := infx∈Ω p(x) > 1 and p+ := supx∈Ω p(x) < +∞. Let {pn} ⊂ P(Ω) be a sequence of
functions in C1(Ω) such that

p−
n → ∞ as n → ∞, (1.1)

there exists a real constant β > 1 such that p+
n � βp−

n for all n ∈ N, (1.2)
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and

lim
n→∞

|∇pn(x)|
pn(x)2

= 0, ∀x ∈ Ω. (1.3)

Note that (1.2) implies in particular that

pn → ∞ uniformly in Ω. (1.4)

We also remark that both (1.2) and (1.3) hold if we assume, for example, that there exists a
function ξ ∈ C(Ω) such that

∇lnpn(·) → ξ uniformly in Ω. (1.5)

Conditions of type (1.4) and (1.5) were initially introduced in [11] in the context of a study of
the asymptotic behavior of pn(·)-harmonic functions as pn → ∞, while conditions such as (1.1)
and (1.2) appear initially in [1].

In what follows |v|q(·) will denote the Luxemburg norm of v in the variable exponent
Lebesgue space Lq(·)(Ω;Rm), m ∈ N. We refer to Section 2 of the paper for the precise defi-
nitions, as well as for more details on variable exponent Lebesgue and Sobolev spaces.

Definition 1. We say that p ∈ P log(Ω) if p ∈ P(Ω) and, in addition, p satisfies the global
log-Hölder continuity condition: there exist c1, c2 > 0, and p∞ ∈R such that

∣∣p(x) − p(y)
∣∣ � c1

ln(e + 1/|x − y|) for all x, y ∈ Ω,

and ∣∣p(x) − p∞
∣∣ � c2

ln(e + |x|) , for all x ∈ Ω.

Remark 1. Typical examples of sequences of functions pn ∈ P log(Ω) that satisfy our as-
sumptions (1.1), (1.2), and (1.3) are: pn(x) = n, pn(x) = p(x) + n, pn(x) = np(x/n), and
pn(x) = np(x), where p ∈ P log(Ω). These examples are taken from [11]. In particular, (1.5)
also holds, with ξ ≡ 0 in all but the last example, in which case one has ξ = ∇ lnp.

Let δ : Ω → [0,∞) be the distance function to ∂Ω , given by δ(x) := dist(x, ∂Ω) =
infy∈∂Ω |x − y|. It is known (see Lemma 1.5 and Section 2 in [9]) that if one defines

Λ∞ := inf

{‖∇ϕ‖L∞(Ω)

‖ϕ‖L∞(Ω)

: ϕ ∈ W
1,∞
0 (Ω) \ {0}

}
, (1.6)

then the infimum above is always achieved at δ, that is,

Λ∞ = ‖∇δ‖L∞(Ω)

‖δ‖L∞(Ω)

= 1

max{dist(x, ∂Ω): x ∈ Ω} ,

and that we have

lim
p→∞ inf

{‖∇ϕ‖Lp(Ω)

‖ϕ‖Lp(Ω)

: ϕ ∈ W
1,p

0 (Ω) \ {0}
}

= Λ∞. (1.7)

This last identity justifies the name of “principal frequency” (of �∞) given in [9] to Λ∞.
Here, �∞ stands for the ∞-Laplace operator, which on smooth functions u is defined by
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