

Available online at www.sciencedirect.com

SCIENCES MATHÉMATIQUES

Bull. Sci. math. 138 (2014) 270-292

www.elsevier.com/locate/bulsci

Weighted estimates for commutators of some singular integrals related to Schrödinger operators

The Anh Bui^{a,b,*}

^a Department of Mathematics, University of Pedagogy, Ho Chi Minh City, Viet Nam ^b Department of Mathematics, Macquarie University, NSW 2109, Australia

Received 10 September 2012

Available online 2 July 2013

Abstract

Let $L = -\Delta + V$ be a Schrödinger operator with a non-negative potential V satisfying some appropriate reverse Hölder inequality. In this paper, we study the boundedness of the commutators of some singular integrals associated to L such as the Riesz transforms and fractional integrals with the new BMO functions introduced in Bongioanni et al. (2011) [1] on the weighted spaces $L^p(w)$ where w belongs to the new classes of weights introduced by Bongioanni et al. (2011) [2]. © 2013 Elsevier Masson SAS. All rights reserved.

MSC: 42B35; 35J10

Keywords: Weight; Riesz transform; Fractional integral; Schrödinger operator; Commutator; BMO

1. Introduction

Let $L = -\Delta + V$ be the Schrödinger operators on \mathbb{R}^n with $n \ge 3$ where the potential V is in the reverse Hölder class RH_q for some q > n/2, i.e., V satisfies the reverse Hölder inequality

$$\left(\frac{1}{|B|} \int_{B} V(y)^{q} \, dy\right)^{1/q} \leq \frac{C}{|B|} \int_{B} V(y) \, dy$$

for all balls $B \subset \mathbb{R}^n$.

0007-4497/\$ – see front matter © 2013 Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.bulsci.2013.06.007

^{*} Correspondence to: Department of Mathematics, Macquarie University, NSW 2109, Australia. *E-mail addresses:* bt_anh80@yahoo.com, the.bui@mq.edu.au.

In this paper, we consider the following singular integrals associated to L:

- (i) The Riesz transforms $R = \nabla L^{-1/2}$ and their adjoint $R^* = L^{-1/2} \nabla$.
- (ii) Fractional integrals $I_{\alpha} f(x) = L^{-\alpha/2} f(x)$ for $0 < \alpha < n$.

In the classical case when V = 0, it has been shown that Riesz transforms R and their commutators R_b with BMO functions b is bounded on $L^p(w)$ for all 1 and <math>w in the Muckenhoupt classes A_p , see for example [9]. Also, the classical fractional integrals and their commutators with BMO functions b are bounded from $L^p(w^p)$ to $L^q(w^q)$ for all $1 , <math>1/p - 1/q = \alpha/n$ and $w \in A_{1+1/p'} \cap RH_q$, or equivalently $w^q \in A_{1+\frac{q}{p'}}$, where A_p is the Muckenhoupt class of weights, see for example [10,11]. Recall that a non-negative and locally integrable function w is said to be in the Muckenhoupt A_p classes with $1 \le p < \infty$, if the following inequality holds for all balls $B \subset \mathbb{R}^n$

$$\left(\int_{B} w\right)^{1/p} \left(\int_{B} w^{-\frac{1}{p-1}}\right)^{1/p'} \leqslant C|B|.$$
(1)

Recently, in [2], a new class of weights associated to Schrödinger operators *L* has been introduced. According to [2], the authors defined the new classes of weights $A_p^L = \bigcup_{\theta>0} A_p^{L,\theta}$ for $p \ge 1$, where $A_p^{L,\theta}$ is the set of those weights satisfying

$$\left(\int_{B} w\right)^{1/p} \left(\int_{B} w^{-\frac{1}{p-1}}\right)^{1/p'} \leq C|B| \left(1 + \frac{r}{\rho(x)}\right)^{\theta}$$
(2)

for all balls B = B(x, r). We denote $A_{\infty}^{L} = \bigcup_{p \ge 1} A_{p}^{L}$ where the critical radius function $\rho(\cdot)$ is defined by

$$\rho(x) = \sup\left\{r > 0: \ \frac{1}{r^{n-2}} \int\limits_{B(x,r)} V \leqslant 1\right\}, \quad x \in \mathbb{R}^n,\tag{3}$$

see [8].

It is easy to see that in certain circumstances the new class A_p^L is larger than the Muckenhoupt class A_p . The following properties hold for new classes A_p^L , see [2, Proposition 5].

Proposition 1.1. The following statements hold:

i) A^L_p ⊂ A^L_q for 1 ≤ p ≤ q < ∞.
ii) If w ∈ A^L_p with p > 1 then there exists ε > 0 such that w ∈ A^L_{p-ε}. Consequently, A^L_p = ∪_{q < p} A^L_q.

For new classes A_p^L , the weighted norm inequalities for the some singular integrals associated to L were investigated.

Download English Version:

https://daneshyari.com/en/article/4668844

Download Persian Version:

https://daneshyari.com/article/4668844

Daneshyari.com