

Bull. Sci. math. 137 (2013) 251-267

www.elsevier.com/locate/bulsci

Conditions of hyperbolicity of linear differentiable systems with constant multiplicity

Giovanni Taglialatela^a, Jean Vaillant^{b,*}

^a Dipartimento di Scienze Economiche e Metodi Matematici, Universitá di Bari, via C. Rosalba 53, 70124 Bari, Italy ^b Mathématiques IMJ, Université Paris VI, BC 247, 4 Place Jussieu, 75252 Paris Cedex 05, France

Received 17 May 2012

Available online 1 June 2012

Abstract

Let *h* be a system with characteristics of constant multiplicity. We prove that if there exists an operator A' such that $h \circ A'$ has diagonal principal part and admits a good decomposition, then *h* must satisfy the Levi conditions.

© 2012 Elsevier Masson SAS. All rights reserved.

MSC: 35L45

Keywords: Cauchy problem; Systems with constant multiplicity; Levi conditions; Good decomposition

1. Introduction

Let $x = (x_0, x') = (x_0, x_1, ..., x_n) \in \Omega$, Ω neighborhood of $0 \in \mathbb{R}^{n+1}$, we consider an $N \times N$ linear first order system of differential operators

h(x, D) = a(x, D) + b(x),

where $D = (D_0, D') = (D_0, D_1, ..., D_n)$, $D_0 = \frac{\partial}{\partial x_0}$, $D_j = \frac{\partial}{\partial x_j}$. $a(x, \xi)$ is the principal symbol of $h, \xi = (\xi_0, \xi') = (\xi_0, \xi_1, ..., \xi_n)$. a and b are $N \times N$ matrices with analytic coefficients. We consider the Cauchy problem for h:

$$h(x, D)u(x) = f(x),$$

$$u|_{x_0 = x_0} = u_0(x').$$
(1)

* Corresponding author.

E-mail addresses: taglia@dse.uniba.it (G. Taglialatela), jean.vaillant@upmc.fr (J. Vaillant).

0007-4497/\$ – see front matter © 2012 Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.bulsci.2012.06.003 **Definition 1.** *h* is hyperbolic means that the Cauchy problem (1) is uniformly well-posed in $C^{\infty}(\Omega)$.

Let $\mathcal{O}[\xi]$ be the ring of homogeneous polynomials in ξ , with coefficients from the ring of analytic germs in x at x = 0, and let $\mathcal{M}_N(\mathcal{O}[\xi])$ be the set of the $N \times N$ matrix, whose entries belong to $\mathcal{O}[\xi]$. In $\mathcal{O}[\xi]$ we have the decomposition

$$\det a(x;\xi) = H_1^{m_1}(x;\xi) \cdots H_{\tau_0}^{m_{\tau_0}}(x;\xi),$$
(2)

where H_{τ} , $\tau = 1, ..., \tau_0$, are irreducible polynomials, homogeneous of degree s_{τ} in ξ , with analytic coefficients in x and $m, ..., m_{\tau_0} \in \mathbb{N}$ do not depend on $(x, \xi) \in \Omega \times \mathbb{R}^n \setminus \{0\}$.

We assume that det $a(x; \xi)$ is a hyperbolic polynomial of *constant multiplicity*: the polynomial $H_1 \cdots H_{\tau_0}$ is strictly hyperbolic with respect to $(1, 0, \dots, 0)$ for any $x \in \Omega$, i.e. the solutions in ξ_0 of the equation

$$H_1(x;\xi_0,\xi')\cdots H_{\tau_0}(x;\xi_0,\xi')=0$$

are real and distinct for any $(x, \xi') \in \Omega \times \mathbb{R}^n \setminus \{0\}$. This assumption is equivalent to the following decomposition

$$\det a(x;\xi) = \prod_{j=1}^{r} (\xi_0 - \lambda_{(j)}(x;\xi'))^{m_{(j)}}$$

where the $\lambda_{(i)}$ are real analytic functions with

$$\inf_{\substack{x \in \Omega, |\xi'|=1\\ j \neq k}} \left| \lambda_{(j)}(x;\xi') - \lambda_{(k)}(x;\xi') \right| \neq 0,$$

and the $m_{(i)}$ are constant integers (see [10]).

To simplify the presentation, in the following we assume that in (2) there is only one multiple factor H, of degree s and multiplicity m, and a simple factor K, of degree χ , but the general case can be treated in a similar way, or, equivalently:

$$\det a(x;\xi) = (\xi_0 - \lambda_{(1)}(x;\xi'))^m \cdots (\xi_0 - \lambda_{(s)}(x;\xi'))^m \times (\xi_0 - \lambda_{(s+1)}(x;\xi')) \cdots (\xi_0 - \lambda_{(s+\chi)}(x;\xi')).$$
(3)

We consider the problem: what are the conditions on a and b in order that h is hyperbolic?

We have previously defined the conditions L [15]. Before to state them, we recall some notations.

Let (*H*) be the prime ideal of $\mathcal{O}[\xi]$ defined by *H*, we consider $\mathcal{O}[\xi]/_{(H)}$, the localized ring of $\mathcal{O}[\xi]$ with respect to (*H*). $\mathcal{O}[\xi]/_{(H)}$ is a principal ring, whose elements are the fractions whose denominators are not divisible by *H*; its ideals are generated by the powers of *H*. In $\mathcal{O}[\xi]/_{(H)}$ the matrix $a(x, \xi)$ is equivalent to the diagonal matrix:

diag
$$[H^p, H^{q_1}, \ldots, H^{q_\ell}, 1, \ldots, 1],$$

where p, q_1, \ldots, q_ℓ are such that:

$$p \ge q_1 \ge \cdots \ge q_\ell > 0, \qquad p+q=m, \qquad q := q_1 + \cdots + q_\ell$$

The sequence (p, q_1, \ldots, q_ℓ) will be called the *type* of the operator.

Download English Version:

https://daneshyari.com/en/article/4668871

Download Persian Version:

https://daneshyari.com/article/4668871

Daneshyari.com