

Available online at www.sciencedirect.com

Bull. Sci. math. 138 (2014) 643-655

sciences Mathématiques

www.elsevier.com/locate/bulsci

Equivalent Harnack and gradient inequalities for pointwise curvature lower bound *

Marc Arnaudon^b, Anton Thalmaier^c, Feng-Yu Wang^{a,d,*}

 ^a School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
^b Institut de Mathématiques de Bordeaux, UMR 5251 Université de Bordeaux and CNRS, France
^c Mathematics Research Unit, FSTC, University of Luxembourg, 6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg
^d Department of Mathematics, Swansea University, Singleton Park, SA2 8PP, United Kingdom

Received 16 October 2013

Available online 1 December 2013

Abstract

By using a coupling method, an explicit log-Harnack inequality with local geometry quantities is established for (sub-Markovian) diffusion semigroups on a Riemannian manifold (possibly with boundary). This inequality as well as the consequent L^2 -gradient inequality, are proved to be equivalent to the pointwise curvature lower bound condition together with the convexity or absence of the boundary. Some applications of the log-Harnack inequality are also introduced.

© 2013 Elsevier Masson SAS. All rights reserved.

MSC: 58J65; 60H30

Keywords: Log-Harnack inequality; Riemannian manifold; Diffusion process

1. Introduction

Let *M* be a *d*-dimensional connected complete Riemannian manifold possibly with a boundary ∂M . Consider $L = \Delta + Z$ for a C^1 -vector field *Z*. Let $X_t(x)$ be the (reflecting) diffusion

0007-4497/\$ – see front matter © 2013 Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.bulsci.2013.11.001

 $^{^{*}}$ Supported in part by NNSFC (11131003) and Lab. Math. Com. Sys.

^{*} Corresponding author at: School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China. *E-mail addresses:* wangfy@bnu.edu.cn, F.-Y.Wang@swansea.ac.uk (F.-Y. Wang).

process generated by L with starting point x and life time $\zeta(x)$. Then the associated diffusion semigroup P_t is given by

$$P_t f(x) := \mathbb{E} \Big[f \Big(X_t(x) \Big) \mathbf{1}_{\{t < \zeta(x)\}} \Big], \quad t \ge 0, \ f \in \mathscr{B}_b(M).$$

Although the semigroup depends on Z and the geometry on the whole manifold, we aim to establish Harnack, resp. gradient type inequalities for P_t by using local geometry quantities.

Let $K \in C(M)$ be such that

$$\operatorname{Ric}_{Z} := \operatorname{Ric} - \nabla Z \geqslant -K,\tag{1.1}$$

i.e. for any $x \in M$ and $X \in T_x M$, $\operatorname{Ric}(X, X) - \langle X, \nabla_X Z \rangle \ge -K(x)|X|^2$. Next, for any $D \subset M$, let

$$K(D) := \sup_{D} K, \qquad D_r = \big\{ z \in M \colon \rho(z, D) \leqslant r \big\}, \quad r \ge 0,$$

where ρ is the Riemannian distance on M. Finally, to investigate P_t using local curvature bounds, we introduce, for a given bounded open domain $D \subset M$, the following class of reference functions:

$$\mathscr{C}_D = \left\{ \phi \in C^2(D) \colon \phi|_D > 0, \ \phi|_{\partial D \setminus \partial M} = 0, \ N\phi|_{\partial M \cap \partial D} \ge 0 \right\},$$

where N is the inward unit normal vector field of ∂M . When $\partial M = \emptyset$, the restriction $N\phi|_{\partial M} \ge 0$ is automatically dropped. For any $\phi \in \mathcal{C}_D$, we have

$$c_D(\phi) = \sup_D \left\{ 5 |\nabla \phi|^2 - \phi L \phi \right\} \in [0, \infty).$$

The finiteness of $c_D(\phi)$ is trivial since \overline{D} is compact. To see that $c_D(\phi) \ge 0$, we consider the following two situations:

- (a) There exists $x \in \partial D \setminus \partial M$. We have $\phi(x) = 0$ so that $c_D(\phi) \ge \{5 |\nabla \phi|^2 \phi L \phi\}(x) \ge 0$.
- (b) When $\partial D \setminus \partial M = \emptyset$, we have $\overline{D} = M$. Otherwise, there exists $z \in M \setminus (D \cup \partial M)$. For any $z' \in D \setminus \partial M$, let $\gamma : [0, 1] \to M \setminus \partial M$ be a smooth curve linking z and z'. Since $z' \in D$ but $z \notin D$, there exists $s \in [0, 1]$ such that $\gamma(s) \in \partial D$. This is however impossible since $\partial D \subset \partial M$ and $\gamma(s) \notin \partial M$. Therefore, in this case $M = \overline{D}$ is compact so that the reflecting diffusion process is non-explosive. Now, let $x \in \overline{D}$ such that $\phi(x) = \max_{\overline{D}} \phi$. Since $N\phi|_{\partial M} \ge 0$ due to $\phi \in \mathscr{C}_D$, $\phi(X_t) \phi(x) \int_0^t L\phi(X_s) ds$ is a sub-martingale so that

$$\phi(x) \ge \mathbb{E}\phi(X_t) \ge \phi(x) + \int_0^t \mathbb{E}L\phi(X_s) \,\mathrm{d}s, \quad t \ge 0.$$

This implies $L\phi(x) \leq 0$ (known as the maximum principle) and thus,

$$c_D(\phi) \ge \left\{ 5|\nabla \phi|^2 - \phi L\phi \right\}(x) \ge 0$$

Theorem 1.1. Let $K \in C(M)$. The following statements are equivalent:

- (1) (1.1) holds and ∂M is either empty or convex.
- (2) For any bounded open domain $D \subset M$ and any $\phi \in \mathscr{C}_D$, the log-Harnack inequality

Download English Version:

https://daneshyari.com/en/article/4668899

Download Persian Version:

https://daneshyari.com/article/4668899

Daneshyari.com