Uniqueness results for nonlinear elliptic problems with two lower order terms

Rosaria Di Nardo *, Adamaria Perrotta
Dipartimento di Matematica, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy

Received 15 February 2012
Available online 10 March 2012

Abstract

In this paper we consider a class of Dirichlet problems for nonlinear elliptic equations of the type $$
\begin{cases}-\operatorname{div}(\mathbf{a}(x, \nabla u))-\operatorname{div}(\boldsymbol{\Phi}(x, u))+H(x, \nabla u)=f & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega\end{cases}
$$ where Ω is a bounded open subset of $R^{N}, N>2, f$ is an $L^{1}(\Omega)$ function. We fix some structural conditions on $\mathbf{a}, \boldsymbol{\Phi}$ and H to prove uniqueness results for solutions obtained as limit of approximations. © 2012 Elsevier Masson SAS. All rights reserved.

Keywords: Rearrangements; Nonlinear equations; Uniqueness results

1. Introduction

In the present paper we deal with uniqueness for a class of nonlinear elliptic problems of the type

$$
\begin{cases}-\operatorname{div}(\mathbf{a}(x, \nabla u))-\operatorname{div}(\boldsymbol{\Phi}(x, u))+H(x, \nabla u)=f & \text { in } \Omega, \tag{1.1}\\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where Ω is a bounded open subset of $\mathbb{R}^{N}, N>2$ and $2-\frac{1}{N}<p<N$.
We assume that $\mathbf{a}:(x, z) \in \Omega \times \mathbb{R}^{N} \rightarrow \mathbf{a}(x, z)=\left(a_{i}(x, z)\right) \in \mathbb{R}^{N}$ is a Carathéodory function satisfying

[^0]\[

$$
\begin{align*}
& \mathbf{a}(x, \xi) \cdot \xi \geqslant \lambda|\xi|^{p}, \quad \xi \in \mathbb{R}^{N}, \lambda>0 \tag{1.2}\\
& |\mathbf{a}(x, \xi)| \leqslant \Lambda|\xi|^{p-1}+K, \quad \xi \in \mathbb{R}^{N}, \Lambda, K>0 \tag{1.3}\\
& (\mathbf{a}(x, \xi)-\mathbf{a}(x, \eta)) \cdot(\xi-\eta)>0, \quad \xi \neq \eta \tag{1.4}
\end{align*}
$$
\]

for almost every $x \in \mathbb{R}^{N}$ and for every $\xi, \eta \in \mathbb{R}^{N}$. Moreover $H:(x, \xi) \in \Omega \times \mathbb{R}^{N} \rightarrow$ $H(x, \xi) \in \mathbb{R}$ is a Carathéodory function, differentiable with respect to ξ, satisfying the following conditions

$$
\begin{equation*}
\left|\nabla_{\xi} H(x, \xi)\right| \leqslant b(x)(1+|\xi|)^{p-2}, \tag{1.5}
\end{equation*}
$$

where $b(x)$ is a nonnegative function belonging to $L^{\beta}(\Omega)$ with

$$
\begin{equation*}
\beta>\frac{2(p-1) N}{2(N-2)-p(N-3)} \quad \text { if } p>2, \tag{1.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\beta>\frac{2(p-1) N}{p(N+1)-2 N} \quad \text { if } 2-\frac{1}{N}<p \leqslant 2, \tag{1.7}
\end{equation*}
$$

$\boldsymbol{\Phi}:(x, s) \in \Omega \times \mathbb{R}^{N} \rightarrow \boldsymbol{\Phi}(x, s)=\left(\Phi_{i}(x, s)\right) \in \mathbb{R}^{N}$ is a Carathéodory function, differentiable with respect to s, satisfying the following conditions

$$
\begin{equation*}
\left|\Phi_{s}(x, s)\right| \leqslant c(x)(1+|s|)^{p-2}, \tag{1.8}
\end{equation*}
$$

where $c(x)$ is a nonnegative function belonging to $L^{r}(\Omega)$ with

$$
\begin{equation*}
r>\frac{N(p-1)}{N(2-p)+p(p-1)-1} \quad \text { if } p>2 \tag{1.9}
\end{equation*}
$$

or

$$
\begin{equation*}
r>\frac{N(p-1)}{1+N(p-2)} \quad \text { if } 2-\frac{1}{N}<p \leqslant 2 \tag{1.10}
\end{equation*}
$$

Furthermore

$$
f \in L^{1}(\Omega)
$$

We recall that when the datum $f \in W^{-1, p^{\prime}}(\Omega)$ and the coefficients $b(x)$ and $c(x)$ belong respectively to the Lebesgue spaces $L^{\beta}(\Omega)$ and $L^{r}(\Omega)$ with $\beta>N$ and $r>\frac{N}{p-1}$, the previous set of hypotheses ensure the existence of a weak solution, i.e. a function $u \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega}(\mathbf{a}(x, \nabla u) \cdot \nabla \varphi) d x+\int_{\Omega}(\boldsymbol{\Phi}(x, u) \cdot \nabla \varphi) d x+\int_{\Omega} H(x, \nabla u) \varphi d x=\int_{\Omega} f \varphi d x \tag{1.11}
\end{equation*}
$$

for every $\varphi \in W_{0}^{1, p}(\Omega)$ (see [32] for example). This notion of a solution does not fit if $f \in L^{1}(\Omega)$.

When $f \in L^{1}(\Omega)$ and $p=2$, the existence and uniqueness to (1.1) has been proved in [41] by duality arguments under the hypotheses $\|c\|_{L^{\frac{N}{p-1}}}$ or $\|b\|_{L^{N}}$ is small enough. In particular it has been proved that this solution belongs to $W_{0}^{1, q}(\Omega)$ for every $q<\frac{N}{N-1}$. Unfortunately such notion of solution cannot be extended to the nonlinear case except to the case $p=2$.

The first attempt to nonlinear case is given in [13,14], where the existence of a distributional solution u to problems of the type (1.1) with $\boldsymbol{\Phi}=0$ and $H=0$ has been proved. Such a solution is

https://daneshyari.com/en/article/4668918

Download Persian Version:

https://daneshyari.com/article/4668918

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: rosaria.dinardo@unina.it (R. Di Nardo), adamaria.perrotta@unina.it (A. Perrotta).

