

Bull. Sci. math. 132 (2008) 218–231

BULLETIN DES SCIENCES Mathématiques

www.elsevier.com/locate/bulsci

Hopf bifurcation for degenerate singular points of multiplicity $2n - 1$ in dimension 3

Jaume Llibre ^a*,*∗*,*¹ , Hao Wu ^b*,*²

^a *Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain* ^b *Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain*

Received 3 January 2007; accepted 9 January 2007

Available online 12 March 2007

Abstract

The main purpose of this paper is to study the Hopf bifurcation for a class of degenerate singular points of multiplicity $2n - 1$ in dimension 3 via averaging theory. More specifically, we consider the system

$$
\begin{aligned} \n\dot{x} &= -H_y(x, y) + P_{2n}(x, y, z) + \varepsilon P_{2n-1}(x, y), \\ \n\dot{y} &= H_x(x, y) + Q_{2n}(x, y, z) + \varepsilon Q_{2n-1}(x, y), \\ \n\dot{z} &= R_{2n}(x, y, z) + \varepsilon c z^{2n-1}, \n\end{aligned}
$$

where

$$
H = \frac{1}{2n} (x^{2l} + y^{2l})^m, \quad n = lm,
$$

\n
$$
P_{2n-1} = x (p_1 x^{2n-2} + p_2 x^{2n-3} y + \dots + p_{2n-1} y^{2n-2}),
$$

\n
$$
Q_{2n-1} = y (p_1 x^{2n-2} + p_2 x^{2n-3} y + \dots + p_{2n-1} y^{2n-2}),
$$

and P_{2n} , Q_{2n} and R_{2n} are arbitrary analytic functions starting with terms of degree $2n$. We prove using the averaging theory of first order that, moving the parameter ε from $\varepsilon = 0$ to $\varepsilon \neq 0$ sufficiently small, from the origin it can bifurcate $2n - 1$ limit cycles, and that using the averaging theory of second order from the origin it can bifurcate $3n - 1$ limit cycles when $l = 1$.

© 2007 Elsevier Masson SAS. All rights reserved.

0007-4497/\$ – see front matter © 2007 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.bulsci.2007.01.003

^{*} Corresponding author.

E-mail addresses: jllibre@mat.uab.es (J. Llibre), hwu@crm.es (H. Wu).

¹ The author has been supported by the grants MCYT-Spain MTM2005-06098-C02-01 and CIRIT-Spain 2005SGR 00550.

² The author has been supported by a CRM grant.

MSC: 37G15; 37D45

Keywords: Limit cycles; Hopf bifurcation; Averaging theory

1. Introduction and statement of the main results

Let

$$
\dot{x} = P(x, y, z),
$$
 $\dot{y} = Q(x, y, z),$ $\dot{z} = R(x, y, z),$

be an analytic system in \mathbb{R}^3 starting with terms in *P*, *Q* and *R* of order $2n - 1$. Then, here we say that the singular point at the origin of \mathbb{R}^3 has *multiplicity* $2n - 1$.

The main purpose of this paper is to study the Hopf bifurcation which takes place at the singular point located at the origin for a subclass analytic differential equations in \mathbb{R}^3 of the form

$$
\begin{aligned}\n\dot{x} &= \overline{P}_{2n-1}(x, y, z) + \overline{P}_{2n}(x, y, z), \\
\dot{y} &= \overline{Q}_{2n-1}(x, y, z) + \overline{Q}_{2n}(x, y, z), \\
\dot{z} &= \overline{R}_{2n-1}(x, y, z) + \overline{R}_{2n}(x, y, z),\n\end{aligned} \tag{1}
$$

where \overline{P}_{2n-1} , \overline{Q}_{2n-1} and \overline{R}_{2n-1} are homogeneous polynomials of degree $2n-1$, and \overline{P}_{2n} , \overline{Q}_{2n} and \overline{R}_{2n} are analytical functions starting with terms of order $2n$.

In general Hopf bifurcation is well studied for singular points which have an eigenvalue of the form $\alpha(\varepsilon) \pm \beta(\varepsilon)i$ with $\alpha(0) = 0$ and $\alpha'(0) \neq 0$. Also in dimension 2 the Hopf bifurcation can be obtained for the singular points having eigenvalues of the form ±*βi* using the so-called Lyapunov constants, see for instance [1,2]. But for systems (1) with $n > 1$, the singular point located at the origin is degenerated and all its eigenvalues are zero, so the standard techniques for studying the limit cycles that bifurcate from the origin changing a parameter cannot be applied.

We shall study the Hopf bifurcation of a subclass of systems (1) using the averaging theory, see Section 2. Our main results are as follows.

Theorem 1. We consider the differential systems in \mathbb{R}^3 given by

$$
\begin{aligned}\n\dot{x} &= -H_y(x, y) + P_{2n}(x, y, z) + \varepsilon P_{2n-1}(x, y), \\
\dot{y} &= H_x(x, y) + Q_{2n}(x, y, z) + \varepsilon Q_{2n-1}(x, y), \\
\dot{z} &= R_{2n}(x, y, z) + \varepsilon c z^{2n-1},\n\end{aligned} \tag{2}
$$

where

$$
H = \frac{1}{2n} (x^{2l} + y^{2l})^m, \quad n = lm,
$$

\n
$$
P_{2n-1} = x (p_1 x^{2n-2} + p_2 x^{2n-3} y + \dots + p_{2n-1} y^{2n-2}),
$$

\n
$$
Q_{2n-1} = y (p_1 x^{2n-2} + p_2 x^{2n-3} y + \dots + p_{2n-1} y^{2n-2}),
$$

*and P*2*n, Q*2*ⁿ and R*2*ⁿ are arbitrary analytic functions starting with terms of degree* 2*n. Then, moving the parameter* ε *from* $\varepsilon = 0$ *to* $\varepsilon \neq 0$ *, from the origin of system* (2) *it can bifurcate* $2n - 1$ *limit cycles.*

Download English Version:

<https://daneshyari.com/en/article/4669174>

Download Persian Version:

<https://daneshyari.com/article/4669174>

[Daneshyari.com](https://daneshyari.com)