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By applying the generalized singular-value decompositions (GSVDs) of matrix pairs, 
a necessary and sufficient solvability condition for mixed Sylvester equations is established, 
the explicit representation of the general solution is given. Also, the minimum-norm 
solution of the matrix equations is discussed.
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r é s u m é

En utilisant les décompositions en valeurs singulières généralisées (GSVDs) de couples de 
matrices, on établit une condition nécessaire et suffisante de résolubilité d’équations de 
Sylvester mixtes et on donne une représentation explicite de la solution générale. On étudie 
également la solution de norme minimale d’équations matricielles.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The purpose of this work is to study the so-called mixed Sylvester matrix equations

A1 X − Y B1 = C1, A2 Z − Y B2 = C2, (1)

where A1 ∈ Cm×n, B1 ∈ Cl×q, C1 ∈ Cm×q, A2 ∈ Cm×p, B2 ∈ Cl×d and C2 ∈ Cm×d .
Eqs. (1) can also be equivalently written as (in matlab notation):

blkdiag(A1, A2)blkdiag(X, Z) − kron(I2, Y )blkdiag(B1, B2) = blkdiag(C1, C2).

There are some valuable works on formulating solutions to the mixed Sylvester matrix Eqs. (1). For example, Liu [5] derived 
a solvability condition of (1) by using the ranks of matrices. By applying the equivalence of matrices, Lee and Vu [4] showed 
that Eqs. (1) are consistent if and only if there exist invertible matrices R1, R2 and S such that
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[
A1 C1
0 B1

]
R1 = S

[
A1 0
0 B1

]
,

[
A2 C2
0 B2

]
R2 = S

[
A2 0
0 B2

]
.

Recently, Wang and He [8] provided some necessary and sufficient solvability conditions and the expression of the general 
solution of (1) by virtue of the ranks and generalized inverses of matrices.

The strategy adopted here is to use the generalized singular value decompositions (GSVDs) of matrix pairs to decouple 
the equations of (1) to obtain some profound results. Beginning in Section 2, we first consider some special cases where 
some constraints are imposed on coefficient matrices, then, for the general situation, we formulate the necessary and suffi-
cient conditions for the existence of the solution of (1) directly by means of the generalized singular value decompositions of 
the matrix pairs (A1, A2) and (B1, B2), and construct the explicit representation of the general solution when it is solvable. 
Furthermore, we will provide the minimum-norm solution of (1) by using the expression of the general solution.

Throughout this paper, we denote the complex m × n matrix space by Cm×n , the set of all unitary matrices in Cn×n by 
UCn×n . AH and A+ stand for the conjugate transpose and the Moore–Penrose generalized inverse of a complex matrix A, 
respectively. In represents the identity matrix of size n. We define an inner product: 〈A, B〉 = trace(BH A) for all A, B ∈ Cm×n , 
then Cm×n is a Hilbert inner product space and the norm of a matrix generated by this inner product is Frobenius norm. For 
A = [αi j]m×n and B = [βi j]m×n , A ∗ B represents the Hadamard product of the matrices A and B , that is, A ∗ B = [αi jβi j]m×n .

2. The solution to the mixed Sylvester matrix Eqs. (1)

The following lemmata are needed in what follows.

Lemma 1. (See [2].) If A ∈ Cm×k, B ∈ Cl×n and C ∈ Cm×n, then the equation A X B = C has a solution X ∈ Ck×l if and only if 
A A+C B+B = C. In this case, the general solution of the matrix equation A X B = C can be described as X = A+C B+ +(Ik − A+ A)W +
T (Il − B B+), where W , T ∈ Ck×l are arbitrary matrices.

Lemma 2. (See [1].) Let A ∈ Cm×k, B ∈ Cl×n and C ∈ Cm×n. The equation

A X − Y B = C (2)

has a solution X ∈ Ck×n, Y ∈ Cm×l if and only if (Im − A A+)C(In − B+B) = 0. If this is the case, the general solution of (2) has the 
form

X = A+C + A+T B + (Ik − A+ A)W , Y = −(Im − A A+)C B+ + T − (Im − A A+)T B B+,

where W ∈ Ck×n and T ∈ Cm×l are arbitrary matrices.

We consider some special cases.
Case 1. If A1 is square and nonsingular, then from the first equation of (1), we can get

X = A−1
1 C1 + A−1

1 Y B1. (3)

By Lemma 2, the second equation of (1) has a solution Z ∈ Cp×d, Y ∈ Cm×l if and only if

(Im − A2 A+
2 )C2(Id − B+

2 B2) = 0.

If this is the case, the general solution of the matrix equation A2 Z − Y B2 = C2 has the form

Z = A+
2 C2 + A+

2 T B2 + (I p − A+
2 A2)W , (4)

Y = −(Im − A2 A+
2 )C2 B+

2 + T − (Im − A2 A+
2 )T B2 B+

2 , (5)

where W ∈ Cp×d and T ∈ Cm×l are arbitrary matrices. Substituting (5) into (3), we have obtained the following result.

Theorem 1. Suppose that A1 ∈ Cm×m, B1 ∈ Cl×q, C1 ∈ Cm×q, A2 ∈ Cm×p, B2 ∈ Cl×d and C2 ∈ Cm×d. If A1 is nonsingular, then the 
equation of (1) has a solution X ∈ Cm×q, Y ∈ Cm×l, Z ∈ Cp×d if and only if (Im − A2 A+

2 )C2(Id − B+
2 B2) = 0. In this case, the general 

solution of (1) can be expressed as

X = A−1
1 C1 − A−1

1 (Im − A2 A+
2 )C2 B+

2 B1 + A−1
1 T B1 − A−1

1 (Im − A2 A+
2 )T B2 B+

2 B1,

Y = −(Im − A2 A+
2 )C2 B+

2 + T − (Im − A2 A+
2 )T B2 B+

2 , Z = A+
2 C2 + A+

2 T B2 + (I p − A+
2 A2)W ,

where W ∈ Cp×d and T ∈ Cm×l are arbitrary matrices.
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