Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

ELSEVIER

Algebra/Group theory

Quasi-hereditary property of double Burnside algebras

Propriété quasi-héréditaire des algèbres de Burnside doubles

Baptiste Rognerud

EPFL/SB/MATHGEOM/CTG, Station 8, CH-1015 Lausanne, Switzerland

ARTICLE INFO

Article history: Received 20 March 2015 Accepted 19 May 2015 Available online 19 June 2015

Presented by the Editorial Board

ABSTRACT

In this short note, we investigate some consequences of the *vanishing* of simple biset functors. As a corollary, if there is no non-trivial vanishing of simple biset functors (e.g., if the group *G* is commutative), then we show that kB(G, G) is a *quasi-hereditary* algebra in characteristic zero. In general, this is not true without the non-vanishing condition, as over a field of characteristic zero, the double Burnside algebra of the alternating group of degree 5 has infinite global dimension.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cette note, on s'intéresse à quelques conséquences du phénomène dit de *disparition* des foncteurs à bi-ensembles simples. On démontre que, dans le cas où il n'y a pas de disparitions non triviales de foncteurs simples (par exemple, si le groupe est commutatif), alors l'algèbre de Burnside double en caractéristique zéro est quasi-héréditaire. Sans l'hypothèse de non-disparitions triviales, ce résultat est en général faux. En effet, l'algèbre de Burnside double du groupe alterné de degré 5 en caractéristique zéro est de dimension globale infinie.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Notations. Let *k* be a field. We denote by C_k the biset category. This is the category whose objects are finite groups and morphisms are given by the double Burnside module (see Definition 3.1.1 of [2]). For a finite group *G*, we denote by $\Sigma(G)$ the full subcategory of C_k consisting of the subquotients of *G*. If \mathcal{D} is a *k*-linear subcategory of C_k , we denote by $\mathcal{F}_{\mathcal{D},k}$ the category of *k*-linear functors from \mathcal{D} to *k*-Mod. If *L* is a subquotient of *K*, we write $L \sqsubseteq K$ and if it is a proper subquotient, we write $L \sqsubset K$. If *V* and *W* are objects in the same Abelian category, we denote by [V : W] the number of subquotients of *V* isomorphic to *W*.

1. Evaluation of functors

Let us first recall some basic facts about the category of biset functors. Let \mathcal{D} be an admissible subcategory of C_k in the sense of Definition 4.1.3 of [2]. The category \mathcal{D} is a skeletally small k-linear category, so the category of biset functors is an Abelian category. The representable functors, also called Yoneda functors, are projective, so this category has *enough*

http://dx.doi.org/10.1016/j.crma.2015.05.008

E-mail address: baptiste.rognerud@epfl.ch.

¹⁶³¹⁻⁰⁷³X/ \odot 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

projective. The simple functors are in bijection with the isomorphism classes of pairs (H, V), where H is an object of \mathcal{D} and V is a kOut(H)-simple module (see Theorem 4.3.10 of [2]).

A biset functor is called *finitely generated* if it is a quotient of a *finite* direct sum of representable functors. In particular, the simple biset functors and the representable functors are finitely generated. As in the case of modules over a ring, the choice axiom has for consequence the existence of a maximal subfunctor for finitely generated biset functors. If F is a biset functor, the intersection of all its maximal subfunctors is called the radical of F and denoted Rad(F).

If *G* is an object of \mathcal{D} , then there is an evaluation functor $ev_G : \mathcal{F}_{\mathcal{D},k} \to \operatorname{End}_{\mathcal{D}}(G)$ -Mod sending a functor to its value at *G*. It is obviously an exact functor and it is well known that it sends a simple functor to 0 or to a simple $\operatorname{End}_{\mathcal{D}}(G)$ -module. It turns out that the fact that a simple functor vanishes at *G* has some consequences for the functors having this simple as a quotient.

Proposition 1.1. Let $F \in \mathcal{F}_{\mathcal{D},k}$ be a finitely generated functor and let $G \in Ob(\mathcal{D})$. Then

- 1. $\operatorname{Rad}(F(G)) \subseteq [\operatorname{Rad}(F)](G)$.
- 2. If none of the simple quotients of F vanishes at G, then Rad(F(G)) = [Rad(F)](G).

Proof. Let *M* be a maximal subfunctor of *F*. Then M(G) is a maximal submodule of F(G) if the simple quotient F/M does not vanish at *G* and M(G) = F(G) otherwise. For the second part, if *N* is a maximal submodule of F(G), let \overline{N} be the subfunctor of *F* generated by *N*. There is a maximal subfunctor *M* of *F* such that $\overline{N} \subseteq M \subset F$. We have $\overline{N}(G) = N \subseteq M(G) \subset F(G)$. By maximality, M(G) = N. The result follows. \Box

Remark 1.2. In Section 9 of [3], the authors gave some conditions for the fact that the evaluation of the radical of the so-called standard functor is the radical of the evaluation. The elementary result of Proposition 1.1 gives new lights on this section. Indeed, Proposition 9.1 [3] gives a sufficient condition for the non-vanishing of the simple quotients of these standard functors.

Over a field, the category of finitely generated projective biset functors is Krull–Schmidt in the sense of [5] (Section 4), so every finitely generated biset functor has a projective cover.

Corollary 1.3. Let $F \in \mathcal{F}_{\mathcal{D},k}$ be a finitely generated functor and let $G \in Ob(\mathcal{D})$. Then,

- 1. If *F* has a unique quotient *S*, and $S(G) \neq 0$, then F(G) is an indecomposable $End_{\mathcal{D}}(G)$ -module.
- 2. If P is an indecomposable projective biset functor such that $\text{Top}(P)(G) \neq 0$, then P(G) is an indecomposable projective $\text{End}_{\mathcal{D}}(G)$ -module.

2. Highest-weight structure of the biset functors category

Let us recall the famous theorem of Webb about the highest-weight structure of the category of biset functors.

Theorem 2.1. (See Theorem 7.2 [6].) Let \mathcal{D} be an admissible subcategory of the biset category. Let k be a field such that char(k) does not divide $|\operatorname{Out}(H)|$ for $H \in Ob(\mathcal{D})$. If \mathcal{D} has a finite number of isomorphism classes of objects, then $\mathcal{F}_{\mathcal{D},k}$ is a highest-weight category.

The set indexing the simple functors is the set, denoted by Λ , of isomorphism classes of pairs (H, V) where $H \in Ob(\mathcal{D})$ and V is a kOut(H)-simple module. Let H and K be two objects of \mathcal{D} . Then

 $\bigoplus_{\substack{X \in \mathcal{D} \\ X \sqsubset H}} \operatorname{Hom}_{\mathcal{D}}(X, K) \operatorname{Hom}_{\mathcal{D}}(H, X),$

can be viewed as a submodule of $\text{Hom}_{\mathcal{D}}(H, K)$ via composition of morphisms. We denote by $I_{\mathcal{D}}(H, K)$ this submodule and by $\text{Hom}_{\mathcal{D}}(H, K)$ the quotient $\text{Hom}_{\mathcal{D}}(H, K)/I_{\mathcal{D}}(H, K)$. This is a natural right kOut(H)-module. If V is a kOut(H)-module, we denote by $\Delta_{H,V}^{\mathcal{D}}$ the functor

$$\Delta_{H,V}^{\mathcal{D}} := K \mapsto \operatorname{Hom}_{\mathcal{D}}(H, K) \otimes_{k\operatorname{Out}(H)} V.$$

When the context is clear, we simply denote by $\Delta_{H,V}$ this functor. If $(H, V) \in \Lambda$, then $\Delta_{H,V}$ is a standard object of $\mathcal{F}_{\mathcal{D},k}$. The set Λ is ordered by (H, V) < (K, W) if $K \sqsubset H$, that is if K is a strict subquotient of H. So the highest-weight structure gives the fact that the projective indecomposable biset functors have a filtration by standard functors. This filtration has the following properties: Download English Version:

https://daneshyari.com/en/article/4669576

Download Persian Version:

https://daneshyari.com/article/4669576

Daneshyari.com