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In this short note, we investigate some consequences of the vanishing of simple biset 
functors. As a corollary, if there is no non-trivial vanishing of simple biset functors (e.g., 
if the group G is commutative), then we show that kB(G, G) is a quasi-hereditary algebra 
in characteristic zero. In general, this is not true without the non-vanishing condition, as 
over a field of characteristic zero, the double Burnside algebra of the alternating group of 
degree 5 has infinite global dimension.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette note, on s’intéresse à quelques conséquences du phénomène dit de disparition
des foncteurs à bi-ensembles simples. On démontre que, dans le cas où il n’y a pas de 
disparitions non triviales de foncteurs simples (par exemple, si le groupe est commutatif), 
alors l’algèbre de Burnside double en caractéristique zéro est quasi-héréditaire. Sans 
l’hypothèse de non-disparitions triviales, ce résultat est en général faux. En effet, l’algèbre 
de Burnside double du groupe alterné de degré 5 en caractéristique zéro est de dimension 
globale infinie.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Notations. Let k be a field. We denote by Ck the biset category. This is the category whose objects are finite groups and morphisms are 
given by the double Burnside module (see Definition 3.1.1 of [2]). For a finite group G, we denote by �(G) the full subcategory of Ck
consisting of the subquotients of G. If D is a k-linear subcategory of Ck, we denote by FD,k the category of k-linear functors from D to 
k-Mod. If L is a subquotient of K , we write L � K and if it is a proper subquotient, we write L � K . If V and W are objects in the same 
Abelian category, we denote by [V : W ] the number of subquotients of V isomorphic to W .

1. Evaluation of functors

Let us first recall some basic facts about the category of biset functors. Let D be an admissible subcategory of Ck in 
the sense of Definition 4.1.3 of [2]. The category D is a skeletally small k-linear category, so the category of biset functors 
is an Abelian category. The representable functors, also called Yoneda functors, are projective, so this category has enough 
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projective. The simple functors are in bijection with the isomorphism classes of pairs (H, V ), where H is an object of D and 
V is a kOut(H)-simple module (see Theorem 4.3.10 of [2]).

A biset functor is called finitely generated if it is a quotient of a finite direct sum of representable functors. In particular, 
the simple biset functors and the representable functors are finitely generated. As in the case of modules over a ring, the 
choice axiom has for consequence the existence of a maximal subfunctor for finitely generated biset functors. If F is a biset 
functor, the intersection of all its maximal subfunctors is called the radical of F and denoted Rad(F ).

If G is an object of D, then there is an evaluation functor evG :FD,k → EndD(G)-Mod sending a functor to its value at G . 
It is obviously an exact functor and it is well known that it sends a simple functor to 0 or to a simple EndD(G)-module. It 
turns out that the fact that a simple functor vanishes at G has some consequences for the functors having this simple as a 
quotient.

Proposition 1.1. Let F ∈FD,k be a finitely generated functor and let G ∈ Ob(D). Then

1. Rad(F (G)) ⊆ [Rad(F )](G).
2. If none of the simple quotients of F vanishes at G, then Rad(F (G)) = [Rad(F )](G).

Proof. Let M be a maximal subfunctor of F . Then M(G) is a maximal submodule of F (G) if the simple quotient F/M does 
not vanish at G and M(G) = F (G) otherwise. For the second part, if N is a maximal submodule of F (G), let N be the 
subfunctor of F generated by N . There is a maximal subfunctor M of F such that N ⊆ M ⊂ F . We have N(G) = N ⊆ M(G) ⊂
F (G). By maximality, M(G) = N . The result follows. �
Remark 1.2. In Section 9 of [3], the authors gave some conditions for the fact that the evaluation of the radical of the 
so-called standard functor is the radical of the evaluation. The elementary result of Proposition 1.1 gives new lights on 
this section. Indeed, Proposition 9.1 [3] gives a sufficient condition for the non-vanishing of the simple quotients of these 
standard functors.

Over a field, the category of finitely generated projective biset functors is Krull–Schmidt in the sense of [5] (Section 4), 
so every finitely generated biset functor has a projective cover.

Corollary 1.3. Let F ∈FD,k be a finitely generated functor and let G ∈ Ob(D). Then,

1. If F has a unique quotient S, and S(G) �= 0, then F (G) is an indecomposable EndD(G)-module.
2. If P is an indecomposable projective biset functor such that Top(P )(G) �= 0, then P (G) is an indecomposable projective 

EndD(G)-module.

2. Highest-weight structure of the biset functors category

Let us recall the famous theorem of Webb about the highest-weight structure of the category of biset functors.

Theorem 2.1. (See Theorem 7.2 [6].) Let D be an admissible subcategory of the biset category. Let k be a field such that char(k) does 
not divide |Out(H)| for H ∈ Ob(D). If D has a finite number of isomorphism classes of objects, then FD,k is a highest-weight category.

The set indexing the simple functors is the set, denoted by �, of isomorphism classes of pairs (H, V ) where H ∈ Ob(D)

and V is a kOut(H)-simple module. Let H and K be two objects of D. Then
⊕
X∈D
X�H

HomD(X, K )HomD(H, X),

can be viewed as a submodule of HomD(H, K ) via composition of morphisms. We denote by ID(H, K ) this submodule and 
by 

←−−−−
HomD(H, K ) the quotient HomD(H, K )/ID(H, K ). This is a natural right kOut(H)-module. If V is a kOut(H)-module, 

we denote by �D
H,V the functor

�D
H,V := K 	→ ←−−−−

HomD(H, K ) ⊗kOut(H) V .

When the context is clear, we simply denote by �H,V this functor. If (H, V ) ∈ �, then �H,V is a standard object of FD,k . 
The set � is ordered by (H, V ) < (K , W ) if K � H , that is if K is a strict subquotient of H . So the highest-weight structure 
gives the fact that the projective indecomposable biset functors have a filtration by standard functors. This filtration has the 
following properties:
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