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We generalize the decomposition of Uq(g) introduced by A. Joseph in [5] and link it, for 
g semisimple, to the celebrated computation of central elements due to V. Drinfeld [2]. 
In that case, we construct a natural basis in the center of Uq(g) whose elements behave 
as Schur polynomials and thus explicitly identify the center with the ring of symmetric 
functions.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous généralisons la décomposition de Uq(g) introduite par A. Joseph [5] et la relions, 
pour g semi-simple, au calcul bien connu d’éléments centraux dû à V. Drinfeld [2]. Dans 
ce cas, nous construisons une base naturelle dans le centre de Uq(g), dont les éléments 
se conduisent comme des polynômes de Schur, et nous identifions donc explicitement le 
centre avec l’anneau de fonctions symétriques.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

1.1. Let H be an associative algebra with unity over a field k and let C be a full abelian subcategory closed under 
submodules of the category H − Mod of left H-modules. Suppose that we have a “finite duality” functor � : C → Mod−H
with V � ⊆ V ∗ = Homk(V , k) (with equality if and only if V is finite dimensional) with its natural right H-module structure, 
such that the restriction of the evaluation pairing 〈·, ·〉V : V ⊗ V ∗ → k to V ⊗ V � is non-degenerate for all objects V in C
(see Section 2.1 for details). Following [4], we define βV : V ⊗D(V ) V � → H∗ where D(V ) = EndH V � = (EndH V )op by

βV (v ⊗ f )(h) = 〈h � v, f 〉V = 〈v, f 	 h〉V , v ∈ V , f ∈ V �, h ∈ H,

where � (respectively, 	) denotes the left (respectively, right) H-action. It is easy to see that βV is well-defined. Set 
H∗

V = ImβV . Recall that V ⊗ V � and H∗ are naturally H-bimodules. The following is essentially proved in [4, §3.1] and [3, 
Corollary 1.16].
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Proposition 1.1.

(a) For all V ∈ C , βV is a homomorphism of H-bimodules and H∗
V depends only on the isomorphism class of V . Moreover, if V , V ′ ∈ C

are simple and H∗
V = H∗

V ′ then V ∼= V ′;
(b) H∗

V ⊕V ′ = H∗
V + H∗

V ′ for all V , V ′ ∈ C . In particular, H∗
V ⊕n = H∗

V for all n ∈N.
(c) If V ⊗D(V ) V � is simple as an H-bimodule then βV is injective.
(d) If V is simple finite dimensional, then V ⊗D(V ) V � is simple as an H-bimodule and hence βV is injective.

It is natural to call H∗
V a generalized Peter–Weyl component. Denote H∗

C = ∑
[V ]∈Iso C H∗

V and H∗
C = ⊕

[V ]∈Iso◦ C H∗
V , where 

IsoC (respectively, Iso◦ C ) is the set of isomorphism classes of objects (respectively, simple objects) in C . By definition, 
there is a natural homomorphism of H-bimodules H∗

C → H∗
C . Clearly, under the assumptions of Proposition 1.1(c), it is 

injective. Note that H∗
C = ∑

[V ]∈A H∗
V for any subset A of Iso C , which generates it as an additive monoid. The following 

refinement of [4, Theorem 3.10] establishes the generalized Peter–Weyl decomposition.

Theorem 1.2. Suppose that all objects in C have finite length. Then

(a) if H∗
C = H∗

C then C is semisimple;
(b) if C is semisimple and V ⊗D(V ) V � is simple for every V ∈ C simple then H∗

C = H∗
C .

1.2. Henceforth we denote by C fin the full subcategory of C consisting of all finite-dimensional objects. Clearly V ⊗ V � , 
V ∈ C fin, is a unital algebra with unity 1V ; set zV := βV (1V ) ∈ H∗

V . For example, if H = kG for a finite group G , then for 
any finite-dimensional H-module V , we have zV (g) = trV (g), g ∈ G , where trV denotes the trace of a linear endomorphism 
of V .

Given an H-bimodule B , define the subspace B H of H-invariants in B by B H = {b ∈ B : h � b = b 	 h, ∀ h ∈ H} (B H is 
sometimes referred to as the center of B). Clearly, zV ∈ (H∗

V )H , zV (1H ) = dimk V �= 0 and (H∗
V )H = kzV if EndH V = k idV . 

Set ZC = ∑
[V ]∈Iso C ZzV . Given V ∈ C , denote |V | its image in the Grothendieck group K0(C ) of C . The following result 

contrasts sharply with Proposition 1.1 and Theorem 1.2 for non-semisimple C .

Theorem 1.3. Suppose that C = C fin . Then the map K0(C ) → ZC given by |V | �→ zV , [V ] ∈ IsoC is an isomorphism of abelian 
groups.

1.3. To introduce a multiplication on ZC ⊂ (H∗
C )H ⊂ H∗

C , we assume henceforth that H = (H, m, �, ε) is a bialgebra 
and that C is a tensor subcategory of H − Mod. Note that H∗ is an algebra in a natural way. It is easy to see (Lemma 2.4) 
that (H∗)H is a subalgebra of H∗ . We also assume that there is a natural isomorphism (V ⊗ V ′)� ∼= V ′� ⊗ V � in mod−H for 
all V , V ′ ∈ C .

Theorem 1.4.

(a) H∗
V · H∗

V ′ = H∗
V ⊗V ′ for all V , V ′ ∈ C . In particular, H∗

C is a subalgebra of H∗;

(b) zV · zV ′ = zV ⊗V ′ for all V , V ′ ∈ C fin . In particular, if C = C fin then ZC is a subring of (H∗
C )H and the map K0(C ) →ZC from 

Theorem 1.3 is an isomorphism of rings.

Thus, it is natural to regard ZC as the character ring of C .

1.4. It turns out that we can transfer the above structures from H∗
C to H if H = (H, m, �, ε, S) is a Hopf algebra. For an 

H-bimodule B , define left H-actions ad and � on B via (ad h)(b) = h(1) � b 	 S(h(2)) and h � b = S2(h(2)) � b 	 S(h(1)), h ∈ H , 
b ∈ B , where �(b) = b(1) ⊗ b(2) in Sweedler’s notation.

Fix a categorical completion H⊗̂H of H ⊗ H such that ( f ⊗ 1)(H⊗̂H) ⊂ H for all f ∈ H∗
C . Equivalently, �P : H∗

C → H , 
f �→ ( f ⊗ 1)(P ) is a well-defined linear map. Denote A (H) the set of all P ∈ H⊗̂H such that P · (S2 ⊗ 1)(�(h)) = �(h) · P
for all h ∈ H . Clearly, A (H) is a subalgebra of H⊗̂H . Elements of A (H) are analogous to M-matrices (see, e.g., [12]). For 
V ∈ C fin, set cV = cV ,P := �P (zV ) ∈ �P ((H∗

C )H ). Let Z(H) be the center of H .

Theorem 1.5. Let P ∈ A (H). Then �P : H∗
C → H is a homomorphism of left H-modules, where H acts on H∗

C and H via � and ad, 
respectively. Moreover, �P ((H∗

C )H ) ⊂ Z(H) and the assignment |V | �→ cV , [V ] ∈ IsoC fin defines a homomorphism of abelian groups 
chC : K0(C fin) → Z(H).

Surprisingly, �P is often close to be an algebra homomorphism. To make this more precise, we generalize the notion 
of an algebra homomorphism as follows. Let A, B be k-algebras and let F be a collection of subspaces in A. We say 
that a k-linear map � : A → B is an F -homomorphism if �(U ) · �(U ′) ⊂ �(U · U ′) for all U , U ′ ∈ F . We say that F is 
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