

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Algebra/Lie algebras

Generalized Joseph's decompositions *

Décompositions de Joseph généralisées

Arkady Berenstein^a, Jacob Greenstein^b

^a Department of Mathematics, University of Oregon, Eugene, OR 97403, USA
^b Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA

ARTICLE INFO

Article history: Received 23 April 2015 Accepted after revision 9 July 2015 Available online 6 August 2015

Presented by the Editorial Board

ABSTRACT

We generalize the decomposition of $U_q(\mathfrak{g})$ introduced by A. Joseph in [5] and link it, for \mathfrak{g} semisimple, to the celebrated computation of central elements due to V. Drinfeld [2]. In that case, we construct a natural basis in the center of $U_q(\mathfrak{g})$ whose elements behave as Schur polynomials and thus explicitly identify the center with the ring of symmetric functions.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous généralisons la décomposition de $U_q(\mathfrak{g})$ introduite par A. Joseph [5] et la relions, pour \mathfrak{g} semi-simple, au calcul bien connu d'éléments centraux dû à V. Drinfeld [2]. Dans ce cas, nous construisons une base naturelle dans le centre de $U_q(\mathfrak{g})$, dont les éléments se conduisent comme des polynômes de Schur, et nous identifions donc explicitement le centre avec l'anneau de fonctions symétriques.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

1.1. Let *H* be an associative algebra with unity over a field \Bbbk and let \mathscr{C} be a full abelian subcategory closed under submodules of the category *H* – Mod of left *H*-modules. Suppose that we have a "finite duality" functor $\star : \mathscr{C} \to \text{Mod} - H$ with $V^{\star} \subseteq V^* = \text{Hom}_{\Bbbk}(V, \Bbbk)$ (with equality if and only if *V* is finite dimensional) with its natural right *H*-module structure, such that the restriction of the evaluation pairing $\langle \cdot, \cdot \rangle_V : V \otimes V^* \to \Bbbk$ to $V \otimes V^*$ is non-degenerate for all objects *V* in \mathscr{C} (see Section 2.1 for details). Following [4], we define $\beta_V : V \otimes_{D(V)} V^* \to H^*$ where $D(V) = \text{End}_H V^* = (\text{End}_H V)^{\text{op}}$ by

$$\beta_V(v \otimes f)(h) = \langle h \triangleright v, f \rangle_V = \langle v, f \triangleleft h \rangle_V, \qquad v \in V, \ f \in V^\star, \ h \in H,$$

where \triangleright (respectively, \triangleleft) denotes the left (respectively, right) *H*-action. It is easy to see that β_V is well-defined. Set $H_V^* = \text{Im}\beta_V$. Recall that $V \otimes V^*$ and H^* are naturally *H*-bimodules. The following is essentially proved in [4, §3.1] and [3, Corollary 1.16].

http://dx.doi.org/10.1016/j.crma.2015.07.002

^{*} The authors are partially supported by the NSF grant DMS-1403527 (A. B.) and by the Simons Foundation collaboration grant no. 245735 (J. G.). *E-mail addresses:* arkadiy@math.uoregon.edu (A. Berenstein), jacob.greenstein@ucr.edu (J. Greenstein).

¹⁶³¹⁻⁰⁷³X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Proposition 1.1.

- (a) For all $V \in \mathscr{C}$, β_V is a homomorphism of H-bimodules and H_V^* depends only on the isomorphism class of V. Moreover, if $V, V' \in \mathscr{C}$ are simple and $H_V^* = H_{V'}^*$ then $V \cong V'$;
- (b) $H^*_{V \oplus V'} = H^*_V + H^*_{V'}$ for all $V, V' \in \mathscr{C}$. In particular, $H^*_{V \oplus n} = H^*_V$ for all $n \in \mathbb{N}$.
- (c) If $V \otimes_{D(V)} V^*$ is simple as an H-bimodule then β_V is injective.
- (d) If V is simple finite dimensional, then $V \otimes_{D(V)} V^*$ is simple as an H-bimodule and hence β_V is injective.

It is natural to call H_V^* a generalized Peter–Weyl component. Denote $H_{\mathscr{C}}^* = \sum_{[V] \in Iso \mathscr{C}} H_V^*$ and $\underline{H}_{\mathscr{C}}^* = \bigoplus_{[V] \in Iso \mathscr{C}} H_V^*$, where Iso \mathscr{C} (respectively, Iso \mathscr{C}) is the set of isomorphism classes of objects (respectively, simple objects) in \mathscr{C} . By definition, there is a natural homomorphism of *H*-bimodules $\underline{H}_{\mathscr{C}}^* \to H_{\mathscr{C}}^*$. Clearly, under the assumptions of Proposition 1.1(c), it is injective. Note that $H_{\mathscr{C}}^* = \sum_{[V] \in A} H_V^*$ for any subset *A* of Iso \mathscr{C} , which generates it as an additive monoid. The following refinement of [4, Theorem 3.10] establishes the generalized Peter–Weyl decomposition.

Theorem 1.2. Suppose that all objects in *C* have finite length. Then

- (a) if $H^*_{\mathscr{C}} = \underline{H}^*_{\mathscr{C}}$ then \mathscr{C} is semisimple;
- (b) if \mathscr{C} is semisimple and $V \otimes_{D(V)} V^*$ is simple for every $V \in \mathscr{C}$ simple then $H^*_{\mathscr{L}} = \underline{H}^*_{\mathscr{L}}$.

1.2. Henceforth we denote by \mathscr{C}^{fin} the full subcategory of \mathscr{C} consisting of all finite-dimensional objects. Clearly $V \otimes V^*$, $V \in \mathscr{C}^{\text{fin}}$, is a unital algebra with unity 1_V ; set $z_V := \beta_V(1_V) \in H_V^*$. For example, if $H = \Bbbk G$ for a finite group G, then for any finite-dimensional H-module V, we have $z_V(g) = tr_V(g)$, $g \in G$, where tr_V denotes the trace of a linear endomorphism of V.

Given an *H*-bimodule *B*, define the subspace B^H of *H*-invariants in *B* by $B^H = \{b \in B : h \triangleright b = b \triangleleft h, \forall h \in H\}$ (B^H is sometimes referred to as the center of *B*). Clearly, $z_V \in (H_V^*)^H$, $z_V(1_H) = \dim_{\mathbb{K}} V \neq 0$ and $(H_V^*)^H = \Bbbk z_V$ if $\operatorname{End}_H V = \Bbbk \operatorname{id}_V$. Set $\mathcal{Z}_{\mathscr{C}} = \sum_{[V] \in \operatorname{Iso} \mathscr{C}} \mathbb{Z} z_V$. Given $V \in \mathscr{C}$, denote |V| its image in the Grothendieck group $K_0(\mathscr{C})$ of \mathscr{C} . The following result contrasts sharply with Proposition 1.1 and Theorem 1.2 for non-semisimple \mathscr{C} .

Theorem 1.3. Suppose that $\mathscr{C} = \mathscr{C}^{\text{fin}}$. Then the map $K_0(\mathscr{C}) \to \mathcal{Z}_{\mathscr{C}}$ given by $|V| \mapsto z_V$, $[V] \in \text{Iso } \mathscr{C}$ is an isomorphism of abelian groups.

1.3. To introduce a multiplication on $\mathcal{Z}_{\mathscr{C}} \subset (H^*_{\mathscr{C}})^H \subset H^*_{\mathscr{C}}$, we assume henceforth that $H = (H, m, \Delta, \varepsilon)$ is a bialgebra and that \mathscr{C} is a tensor subcategory of H – Mod. Note that H^* is an algebra in a natural way. It is easy to see (Lemma 2.4) that $(H^*)^H$ is a subalgebra of H^* . We also assume that there is a natural isomorphism $(V \otimes V')^* \cong V'^* \otimes V^*$ in mod – H for all $V, V' \in \mathscr{C}$.

Theorem 1.4.

- (a) $H_V^* \cdot H_{V'}^* = H_{V \otimes V'}^*$ for all $V, V' \in \mathscr{C}$. In particular, $H_{\mathscr{C}}^*$ is a subalgebra of H^* ;
- (b) $z_V \cdot z_{V'} = z_{V \otimes V'}$ for all $V, V' \in \mathscr{C}^{\text{fin}}$. In particular, if $\mathscr{C} = \mathscr{C}^{\text{fin}}$ then $\mathcal{Z}_{\mathscr{C}}$ is a subring of $(H^*_{\mathscr{C}})^H$ and the map $K_0(\mathscr{C}) \to \mathcal{Z}_{\mathscr{C}}$ from *Theorem 1.3* is an isomorphism of rings.

Thus, it is natural to regard $\mathcal{Z}_{\mathscr{C}}$ as the character ring of \mathscr{C} .

1.4. It turns out that we can transfer the above structures from $H^*_{\mathscr{C}}$ to H if $H = (H, m, \Delta, \varepsilon, S)$ is a Hopf algebra. For an H-bimodule B, define left H-actions ad and \diamond on B via $(adh)(b) = h_{(1)} \triangleright b \triangleleft S(h_{(2)})$ and $h \diamond b = S^2(h_{(2)}) \triangleright b \triangleleft S(h_{(1)})$, $h \in H$, $b \in B$, where $\Delta(b) = b_{(1)} \otimes b_{(2)}$ in Sweedler's notation.

Fix a categorical completion $H \widehat{\otimes} H$ of $H \otimes H$ such that $(f \otimes 1)(H \widehat{\otimes} H) \subset H$ for all $f \in H^*_{\mathscr{C}}$. Equivalently, $\Phi_P : H^*_{\mathscr{C}} \to H$, $f \mapsto (f \otimes 1)(P)$ is a well-defined linear map. Denote $\mathscr{A}(H)$ the set of all $P \in H \widehat{\otimes} H$ such that $P \cdot (S^2 \otimes 1)(\Delta(h)) = \Delta(h) \cdot P$ for all $h \in H$. Clearly, $\mathscr{A}(H)$ is a subalgebra of $H \widehat{\otimes} H$. Elements of $\mathscr{A}(H)$ are analogous to *M*-matrices (see, e.g., [12]). For $V \in \mathscr{C}^{\text{fin}}$, set $c_V = c_{V,P} := \Phi_P(z_V) \in \Phi_P((H^*_{\mathscr{C}})^H)$. Let Z(H) be the center of *H*.

Theorem 1.5. Let $P \in \mathscr{A}(H)$. Then $\Phi_P : H^*_{\mathscr{C}} \to H$ is a homomorphism of left *H*-modules, where *H* acts on $H^*_{\mathscr{C}}$ and *H* via \diamond and ad, respectively. Moreover, $\Phi_P((H^*_{\mathscr{C}})^H) \subset Z(H)$ and the assignment $|V| \mapsto c_V$, $[V] \in Iso \mathscr{C}^{fin}$ defines a homomorphism of abelian groups $ch_{\mathscr{C}} : K_0(\mathscr{C}^{fin}) \to Z(H)$.

Surprisingly, Φ_P is often close to be an algebra homomorphism. To make this more precise, we generalize the notion of an algebra homomorphism as follows. Let A, B be \Bbbk -algebras and let \mathscr{F} be a collection of subspaces in A. We say that a \Bbbk -linear map $\Phi : A \to B$ is an \mathscr{F} -homomorphism if $\Phi(U) \cdot \Phi(U') \subset \Phi(U \cdot U')$ for all $U, U' \in \mathscr{F}$. We say that \mathscr{F} is

Download English Version:

https://daneshyari.com/en/article/4669645

Download Persian Version:

https://daneshyari.com/article/4669645

Daneshyari.com