EI SEVIER

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Probability theory

An improvement of the mixing rates in a counter-example to the weak invariance principle

Davide Giraudo

Université de Rouen, LMRS, Avenue de l'Université, BP 12 76801 Saint-Étienne-du-Rouvray cedex, France

ARTICLE INFO

Article history: Received 9 February 2015 Accepted after revision 27 July 2015 Available online 1 October 2015

Presented by Jean-François Le Gall

ABSTRACT

In [1], the authors gave an example of absolutely regular strictly stationary process that satisfies the central limit theorem, but not the weak invariance principle. For each q < /1/2, the process can be constructed with mixing rates of order N^{-q} . The goal of this note is to show that actually the same construction can give mixing rates of order N^{-q} for a given q < 1.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans [1], les auteurs ont fourni un exemple de processus strictement stationnaire β -mélangeant vérifiant le théorème limite central, mais pas le principe d'invariance faible. Pour tout q < 1/2, le processus peut être construit avec des taux de mélange de l'ordre de N^{-q} . L'objectif de cette note est de montrer que la même construction peut fournir des taux de mélange de l'ordre de N^{-q} pour un q < 1 donné.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Notations and main result

We recall some notations in order to make this note more self-contained. Let $(\Omega, \mathcal{F}, \mu)$ be a probability space. If $T: \Omega \to \Omega$ is one-to-one, bi-measurable and measure preserving (in sense that $\mu(T^{-1}(A)) = \mu(A)$ for all $A \in \mathcal{F}$), then the sequence $(f \circ T^k)_{k \in \mathbb{Z}}$ is strictly stationary for any measurable $f: \Omega \to \mathbb{R}$. Conversely, each strictly stationary sequence can be represented in this way.

For a zero mean square integrable
$$f \colon \Omega \to \mathbb{R}$$
, we define $S_n(f) := \sum_{j=0}^{n-1} f \circ T^j$, $\sigma_n^2(f) := \mathbb{E}(S_n(f)^2)$ and $S_n^*(f,t) := \mathbb{E}(S_n(f)^2)$

 $S_{\lfloor nt \rfloor}(f) + (nt - \lfloor nt \rfloor) f \circ T^{\lfloor nt \rfloor}$, where $\lfloor x \rfloor$ is the greatest integer, which is less than or equal to x. Define the β -mixing coefficients by

$$\beta(A, B) := \frac{1}{2} \sup \sum_{i=1}^{I} \sum_{j=1}^{J} |\mu(A_i \cap B_j) - \mu(A_i)\mu(B_j)|,$$
 (1)

E-mail address: davide.giraudo1@univ-rouen.fr.

where the supremum is taken over the finite partitions $\{A_i, 1 \le i \le I\}$ and $\{B_j, 1 \le j \le J\}$ of Ω of elements of \mathcal{A} (respectively of \mathcal{B}). They were introduced by Volkonskii and Rozanov [4].

For a strictly stationary sequence $(X_k)_{k\in\mathbb{Z}}$ and $n\geqslant 0$, we define $\beta_X(n)=\beta(n)=\beta(\mathcal{F}_{-\infty}^0,\mathcal{F}_n^\infty)$, where \mathcal{F}_u^ν is the σ -algebra generated by X_k with $u\leqslant k\leqslant \nu$ (if $u=-\infty$ or $\nu=\infty$, the corresponding inequality is strict).

Theorem 1. Let $\delta > 0$. There exists a strictly stationary real valued process $Y = (Y_k)_{k \ge 0} = (f \circ T^k)_{k \ge 0}$ satisfying the following conditions:

- a) the central limit theorem with normalization \sqrt{n} takes place;
- b) the weak invariance principle with normalization \sqrt{n} does not hold;
- c) $\sigma_N(f)^2 \times N$;
- d) for some positive C and each integer N, $\beta_Y(N) \leqslant C \cdot N^{-1+\delta}$;
- e) $Y_0 \in \mathbb{L}^p$ for any p > 0.

We refer the reader to Remark 2 of [1] for a comparison with existing results about the weak invariance principle for strictly stationary mixing sequences.

2. Proof

We recall the construction given in [1]. Let us consider an increasing sequence of positive integers $(n_k)_{k\geq 1}$ such that

$$n_1 \geqslant 2$$
 and $\sum_{k=1}^{\infty} \frac{1}{n_k} < \infty$, (2)

and for each integer $k \geqslant 1$, let A_k^- , A_k^+ be disjoint measurable sets such that $\mu(A_k^-) = 1/(2n_k^2) = \mu(A_k^+)$. Let the random variables e_k be defined by

$$e_k(\omega) := \begin{cases} 1 & \text{if } \omega \in A_k^+, \\ -1 & \text{if } \omega \in A_k^-, \\ 0 & \text{otherwise.} \end{cases}$$
 (3)

We can choose the dynamical system $(\Omega, \mathcal{F}, \mu, T)$ and the sets A_k^+, A_k^- in such a way that the family $(e_k \circ T^i)_{k \geqslant 1, i \in \mathbb{Z}}$ is independent. We define $A_k := A_k^+ \cup A_k^-$ and

$$h_k := \sum_{i=0}^{n_k-1} U^{-i} e_k - U^{-n_k} \sum_{i=0}^{n_k-1} U^{-i} e_k, \quad h := \sum_{k=1}^{+\infty} h_k.$$

$$(4)$$

Let i(N) denote the unique integer such that $n_{i(N)} \leq N < n_{i(N)+1}$.

We shall show the following intermediate result.

Proposition 1. Assume that the sequence $(n_k)_{k \ge 1}$ satisfies (2) and the following condition:

there exists
$$\eta > 0$$
 such that for each k , $n_{k+1} \geqslant n_k^{1+\eta}$. (5)

Then:

- a') $n^{-1/2}S_n(h) \rightarrow 0$ in probability;
- b') the process $(N^{-1/2}S_N^*(h,\cdot))_{N\geqslant 1}$ is not tight in C[0,1];
- c') $\sigma_N(h)^2 \lesssim N$;
- d') for some positive C, $N \cdot \beta_Y(N) \leqslant C n_{i(N)+1} / n_{i(N)}$;
- e') $h \in \mathbb{L}^p$ for any p > 0.

Let us consider a bounded mean-zero function m of unit variance such that the sequence $(m \circ T^i)_{i \geqslant 0}$ is independent and independent of the sequence $(h \circ T^i)_{i \geqslant 0}$. We define f := m + h.

Corollary 2. Assume the sequence $(n_k)_{k\geqslant 1}$ satisfies (5). Then the sequence $(f\circ T^i)_{i\geqslant 0}$ satisfies a), b), c), d') and e).

Download English Version:

https://daneshyari.com/en/article/4669656

Download Persian Version:

https://daneshyari.com/article/4669656

<u>Daneshyari.com</u>