

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Number theory/Algebraic geometry

On Deligne's periods for tensor product motives

Sur les périodes de Deligne des motifs produits tensoriels

Chandrasheel Bhagwat¹

Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India

ARTICLE INFO

Article history: Received 26 August 2014 Accepted after revision 27 November 2014 Available online 31 December 2014

Presented by Claire Voisin

ABSTRACT

In this paper, we give a description of Deligne's periods c^{\pm} for a tensor product of pure motives $M \otimes M'$ over \mathbb{Q} in terms of the period invariants attached to M and M' by Yoshida [8]. The period relations proved by the author and Raghuram in an earlier paper follow from the results of this paper.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous décrivons dans cette Note les périodes de Deligne c^{\pm} des produits tensoriels $M \otimes M'$ de motifs purs sur \mathbb{Q} , en termes des périodes des motifs M et M' et des invariants qui leur sont attachés par Yoshida. Les relations de périodes établies antérieurement par l'auteur et Raghuram résultent de cette description.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let *M* be a pure motive over \mathbb{Q} with coefficients in a number field $\mathbb{Q}(M)$. Suppose that *M* is critical, then a celebrated conjecture of Deligne [3, Conj. 2.8] relates the critical values of its *L*-function L(s, M) to certain periods $c^{\pm}(M(\Pi))$, which are defined through a comparison of the Betti and de Rham realizations of the motive.

Conjecturally, one can associate a motive $M(\Pi)$ with a given cohomological cuspidal automorphic representation Π of $GL_n(\mathbb{A}_{\mathbb{Q}})$. One expects from this correspondence that the standard *L*-function $L(s, \Pi)$ is the motivic *L*-function $L(s, M(\Pi))$ up to a shift in the *s*-variable; see Clozel [2, Sect. 4]. There are certain periods $p^{\epsilon}(\Pi)$ that have been defined by Raghuram–Shahidi [7]. Given cohomological cuspidal automorphic representations Π and Σ of $GL_n(\mathbb{A}_{\mathbb{Q}})$ and $GL_{n-1}(\mathbb{A}_{\mathbb{Q}})$, respectively, Raghuram [5,6] has proved that the product $p^{\epsilon}(\Pi)p^{\eta}(\Sigma)$, for a suitable choice of signs ϵ and η , appears in the critical values of the Rankin–Selberg *L*-function $L(s, \Pi \times \Sigma)$. One can ask whether there is an analogous relation for the Deligne periods so that the results of [6] are compatible with Deligne's conjecture.

In this paper, we give a description of Deligne's periods $c^{\pm}(M \otimes M')$ for the tensor product $M \otimes M'$, where M and M' are two pure motives over \mathbb{Q} all of whose nonzero Hodge numbers are one, in terms of the periods $c^{\pm}(M)$, $c^{\pm}(M')$ and some

http://dx.doi.org/10.1016/j.crma.2014.11.016

E-mail address: cbhagwat@iiserpune.ac.in.

¹ The author is partially supported by the DST-INSPIRE Faculty Scheme, award number [IFA-11MA-05].

¹⁶³¹⁻⁰⁷³X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

other finer invariants attached to *M* and *M'* by Yoshida [8]. The main period relations are in Theorems 3.2, 3.4 and 3.6. The period relations for the ratio $\frac{c^+(M \otimes M')}{c^-(M \otimes M')}$ proved by the author and Raghuram in [1] follow from these results.

2. Preliminaries

2.1. Critical motives

Let *M* be a motive defined over \mathbb{Q} with coefficients in a number field \mathbb{E} . Let $H_B(M)$ be the *Betti realization* of *M*. It is a finite-dimensional vector space over \mathbb{E} . The rank d(M) of *M* is defined to be $\dim_{\mathbb{E}} H_B(M)$. Write $H_B(M) = H_B^+(M) \oplus H_B^-(M)$, where $H_B^{\pm}(M)$ are the ± 1 -eigenspaces for the action of complex conjugation ρ on $H_B(M)$. Let $d^{\pm}(M)$ be the \mathbb{E} -dimensions of $H_B^{\pm}(M)$. The Betti realization has a *Hodge decomposition*:

$$H_B(M) \otimes_{\mathbb{Q}} \mathbb{C} = \bigoplus_{p,q \in \mathbb{Z}} H^{p,q}(M),$$
(2.1)

where $H^{p,q}(M)$ is a free $\mathbb{E} \otimes \mathbb{C}$ -module of rank $h_M^{p,q}$. The numbers $h_M^{p,q}$ are called the *Hodge numbers* of M. We say that M is *pure* if there is an integer w (which is called the purity weight of M) such that $H^{p,q}(M) = \{0\}$ if $p + q \neq w$. Henceforth, we assume that all the motives we consider are pure. We also have $\rho(H^{p,q}(M)) = H^{q,p}(M)$; and hence ρ acts on the (possibly zero) middle Hodge type $H^{w/2,w/2}(M)$.

Let $H_{DR}(M)$ be the *de Rham realization* of *M*; it is a d(M)-dimensional vector space over \mathbb{E} . There is a comparison isomorphism of $\mathbb{E} \otimes_{\mathbb{Q}} \mathbb{C}$ -modules:

$$I: H_B(M) \otimes_{\mathbb{O}} \mathbb{C} \longrightarrow H_{DR}(M) \otimes_{\mathbb{O}} \mathbb{C}.$$

The de Rham realization has a *Hodge filtration* $F^p(M)$ that is a decreasing filtration of \mathbb{E} -subspaces of $H_{DR}(M)$ such that $I(\bigoplus_{p'>p} H^{p',w-p'}(M)) = F^p(M) \otimes_{\mathbb{Q}} \mathbb{C}$. Write the Hodge filtration as

$$H_{DR}(M) = F^{p_1}(M) \supseteq F^{p_2}(M) \supseteq \cdots \supseteq F^{p_m}(M) \supseteq F^{p_{m+1}}(M) = \{0\};$$
(2.2)

all the inclusions are proper and there are no other filtration pieces between two successive members. We assume that the numbers p_{μ} are maximal among all the choices. Let $s_{\mu} = h_M^{p_{\mu}, w-p_{\mu}}$ for $1 \le \mu \le m$. Purity plus the action of complex conjugation on Hodge types says that the numbers p_j and s_{μ} satisfy $p_j + p_{m+1-j} = w$, $\forall 1 \le j \le m$, and $s_{\mu} = s_{m+1-\mu}$, $\forall 1 \le \mu \le m$.

We say that the motive *M* is critical if there exist p^+ , $p^- \in \mathbb{Z}$ such that $\sum_{i=1}^{p^+} s_i = d^+(M)$ and $\sum_{i=1}^{p^-} s_i = d^-(M)$. In this case, one says that $F^{\pm}(M)$ exists and equals $F^{p^{\pm}}(M)$.

2.2. Tensor product of motives

Let *M* and *M'* be pure motives defined over \mathbb{Q} and with coefficients in a number field \mathbb{E} . Suppose that their ranks are *n* and *n'* and purity weights are *w* and *w'*, respectively. We further assume that all the non-zero Hodge numbers of *M* and *M'* are equal to 1.

Suppose $H_B(M) \otimes \mathbb{C} = \bigoplus_{j=1}^n H^{p_j, w-p_j}(M)$, where p_j are integers such that $p_1 < p_2 < \ldots < p_n$. Similarly, suppose $H_B(M') \otimes \mathbb{C} = \bigoplus_{i=1}^n H^{q_j, w'-q_j}(M')$, with $q_1 < q_2 < \ldots < q_{n'}$.

Since all the non-zero Hodge numbers of M and M' are equal to 1, it follows that the Hodge filtrations of the de Rham realizations of M, M' and $M \otimes M'$ are given by

$$\begin{split} H_{DR}(M) &= F^{p_1}(M) \supseteq F^{p_2}(M) \supseteq \ldots \supseteq F^{p_n}(M) \supseteq (0), \\ H_{DR}(M') &= F^{q_1}(M') \supseteq F^{q_2}(M') \supseteq \ldots \supseteq F^{q_{n'}}(M') \supseteq (0), \\ H_{DR}(M \otimes M') &= F^{r_1}(M \otimes M') \supseteq F^{r_2}(M \otimes M') \supseteq \ldots \supset F^{r_m}(M \otimes M') \supseteq (0). \end{split}$$

Let u_t denote the dimension of $F^{r_t}(M \otimes M')/F^{r_{t+1}}(M \otimes M')$ for $1 \le t \le m$. Let us further assume that $M \otimes M'$ is critical. Consider the complex conjugation action on Betti realizations for the motives M and M'.

If the dimension nn' is an even integer, it follows that $d^{\pm}(M \otimes M')$ are equal to $\frac{nn'}{2}$. From the criticality of $M \otimes M'$, it follows that there is $k^+ = k^- = k_0 \ge 1$ such that

$$u_1 + u_2 + \ldots + u_{k_0} = d^{\pm} (M \otimes M') = \frac{nn'}{2}.$$

Let $1 \le i \le n$ and $1 \le j \le n'$. Following Yoshida [8], we define:

$$a_i = \left| \left\{ j : 1 \le j \le n' : p_i + q_j \le r_{k_0} \right\} \right|, \qquad a_j^* = \left| \{i : 1 \le i \le n : p_i + q_j \le r_{k_0} \} \right|.$$

Download English Version:

https://daneshyari.com/en/article/4669684

Download Persian Version:

https://daneshyari.com/article/4669684

Daneshyari.com