

Complex analysis

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/) C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Complementability of exponential systems $\dot{\mathbf{x}}$

Complémentabilité des systèmes d'exponentielles

Yurii Belov

Chebyshev Laboratory, St. Petersburg State University, 14th Line 29B, Vasilyevsky Island, St. Petersburg 199178, Russia

A R T I C L E I N F O A B S T R A C T

Article history: Received 29 October 2014 Accepted 19 December 2014 Available online 7 January 2015

Presented by Gilles Pisier

We prove that any incomplete systems of complex exponentials {ei*λnt* } in *L*²*(*−*π,π)* is a subset of some complete and minimal system of exponentials. In addition, we prove an analogous statement for systems of reproducing kernels in de Branges spaces.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous démontrons que tout système incomplet d'exponentielles complexes {ei*λnt* } dans *L*²*(*−*π,π)* est un sous-ensemble d'un système complet et minimal d'exponentielles. De plus, nous montrons un résultat analogue pour des systèmes de noyaux reproduisants dans les espaces de de Branges.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let a sequence $\Lambda\subset\mathbb{C}$ be such that the system of exponential functions { $e^{i\lambda t}\}_{\lambda\in\Lambda}$ is complete and minimal in $L^2(-\pi,\pi)$. Numerous papers are devoted to the different aspects of the theory of exponential systems such as completeness, Riesz basis property, Riesz sequence property, linear summation methods etc. We refer to [\[9,11,6,5\]](#page--1-0) for details. The geometry of such sequences is not well understood. Nevertheless, there exist a non-geometric necessary and sufficient conditions for the sequence {ei*λ^t* }*λ*∈*^Λ* to be complete and minimal; see Theorem 4 in Lecture 18 of [\[7\].](#page--1-0)

The systems of exponentials are much more regular than an arbitrary system of vectors in $L^2(-\pi,\pi)$. For example, it is easy to verify that if $e^{iat} \in \overline{\text{Span}} \{e^{i\lambda t}\}_{\lambda \in \Lambda}$, $a \notin \Lambda$, then $\overline{\text{Span}} \{e^{i\lambda t}\}_{\lambda \in \Lambda} = L^2(-\pi, \pi)$.

The system $\{e^{i\lambda t}\}_{\lambda\in\Lambda}$ is said to be a Riesz basis if there exists an isomorphism $T: L^2(-\pi,\pi)\to L^2(-\pi,\pi)$ such that $T(e^{int}) = e^{i\lambda_n t} \cdot \|e^{i\lambda_n t}\|^{-1}$, $n \in \mathbb{Z}$ (or, which is the same, $\{e^{i\lambda t}\}_{\lambda \in \Lambda}$ is an image of an orthogonal basis under a bounded invertible operator). Moreover, {ei*λ^t* }*λ*∈*^Λ* is said to be a Riesz sequence if it is a Riesz basis of the closure of the space spanned by elements from {ei*λ^t* }*λ*∈*Λ*.

The next question was raised in $[8, p. 196]$:

Question. Can every Riesz sequence of complex exponentials be complemented up to a complete and minimal system of complex *exponentials?*

E-mail address: [j_b_juri_belov@mail.ru.](mailto:j_b_juri_belov@mail.ru)

<http://dx.doi.org/10.1016/j.crma.2014.12.004>

 $\textstyle{\raisebox{0.6ex}{\scriptsize{*}}}$ Author was supported by RNF grant 14-21-00035.

¹⁶³¹⁻⁰⁷³X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

K. Seip has shown in [10, [Theorem](#page--1-0) 2.8] that system ${e^{ \pm i(n+\sqrt{n})t}}_{n>1}$ is a Riesz sequence of complex exponentials in L^2 ($-\pi, \pi$) that cannot be complemented up to a Riesz basis. We will give a positive answer to the question. Moreover, we do not need the Riesz sequence assumption.

Theorem 1.1. If $\{e^{i\lambda t}\}_{\lambda\in\Lambda}$ is an incomplete system in $L^2(-\pi,\pi)$, then there exists a sequence $S\subset\mathbb{R}$, $\Lambda\cap S=\emptyset$ such that the system ${e^{i\lambda t}}_{\lambda \in \Lambda \cup S}$ *is complete and minimal in* $L^2(-\pi, \pi)$ *.*

In [\[8\],](#page--1-0) this was proved only for very specific real sequences $Λ$ ($Λ = {n + δ_n}_{n\in\mathbb{Z}}$, $δ_n$ is an increasing sequence). It is interesting to note that there exist a lot of complete exponential systems with no complete and minimal subsequences. The simplest example is any sequence { λ_n } such that $|\lambda_n| \to 0$ (but it may happen even if $|\lambda_n| \to \infty$; see Section [4\)](#page--1-0).

The proof of Theorem 1.1 is nonconstructive and based on the deep and significant de Branges theory of entire functions. In Section [3](#page--1-0) we will prove the analogous theorem for the systems of reproducing kernels in *an arbitrary de Branges space*. It would be interesting to find a direct and constructive proof of Theorem 1.1.

In the next section, we transfer our problem to the Paley–Wiener space of entire functions. Section [3.1](#page--1-0) is devoted to the de Branges theory. Section [3.2](#page--1-0) is devoted to the proof of our result.

2. Paley–Wiener space

We reformulate our problem in the Paley–Wiener space

$$
\mathcal{P}W_{\pi} := \left\{ F : F(z) = \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} g(t) e^{itz} dt, \ g \in L^{2}(-\pi, \pi) \right\}.
$$

The Fourier transform F acts unitarily from $L^2(-\pi,\pi)$ onto \mathcal{PW}_π ; under this transform, the exponential functions become the reproducing kernels in $\mathcal{P}W_{\pi}$,

$$
\mathcal{F}(e^{-i\bar{\lambda}t}) = \frac{\sin \pi (z - \bar{\lambda})}{\pi (z - \bar{\lambda})} =: k_{\lambda}^{\mathcal{PW}_{\pi}}(z),
$$

$$
(F, k_{\lambda}^{\mathcal{PW}_{\pi}})_{\mathcal{PW}_{\pi}} = F(\lambda).
$$

This gives us the following description (see, e.g., Theorem 4 in Lecture 18 of [\[7\]\)](#page--1-0).

Proposition 2.1. The system { $e^{i\lambda t}$ } $_{\lambda\in\Lambda}$ is complete and minimal in $L^2(-\pi,\pi)$ if and only if the following three conditions hold:

(i) *the product*

$$
G(z) := \lim_{R \to \infty} \prod_{|\lambda| < R} \left(1 - \frac{z}{\lambda} \right) \tag{2.1}
$$

converges to an entire function G ;

 $\lim_{x \to \infty}$ *For some (any)* $\lambda \in \Lambda$, we have $\frac{G(z)}{z - \lambda} \in \mathcal{P}W_{\pi}$;

(iii) There is no non-zero entire T such that $GT \in \mathcal{PW}_{\pi}$.

If the system {ei*λ^t If* the system ${e^{i\lambda t}}_{\lambda \in A}$ is incomplete, then the product (2.1) may diverge. But since *Λ* satisfies Blaschke's condition $\sum_{\lambda \in A} \frac{|m\lambda|}{|m\lambda|} < \infty$, the product $\lambda \in \Lambda$ $\frac{|\text{Im }\lambda|}{|\lambda|^2} < \infty$, the product

$$
G_{\Lambda}(z) := \prod_{\lambda \in \Lambda} \left(1 - \frac{z}{\lambda}\right) e^{\Re(\lambda^{-1})z} \tag{2.2}
$$

converges. Function G_A is such that $\frac{G(z)}{G(\bar{z})}$ is *a* ratio of two Blaschke products in \mathbb{C}^+ .

Let $\{e^{i\lambda t}\}_{\lambda \in \Lambda}$ be an incomplete system in $L^2(-\pi,\pi)$ and G_Λ be a canonical product from (2.2). Put

 $\mathcal{H}_{\Lambda,\pi} := \{T : T - \text{entire, and } G_{\Lambda}T \in \mathcal{P}W_{\pi}\}.$

It is easy to verify that $\mathcal{H}_{\Lambda,\pi}$ is a nontrivial Hilbert space of entire functions (with respect to the norm inherited from the Paley–Wiener space).

Proposition 2.2. Let { $e^{i\lambda t}$ }_{$\lambda\in\Lambda$} be an incomplete system. Then the system { $e^{i\lambda t}$ } $_{\lambda\in\Lambda\cup S}$ is complete and minimal in $L^2(-\pi,\pi)$ if and only if the set S is a minimal uniqueness set in $H_{\Lambda,\pi}$ (i.e. S is a uniqueness set, but $S \setminus \{s_0\}$ is not a uniqueness set for some (any) $s_0 \in S$).

So, it remains to prove that, in $\mathcal{H}_{\Lambda,\pi}$, there exists a minimal uniqueness set.

Download English Version:

<https://daneshyari.com/en/article/4669688>

Download Persian Version:

<https://daneshyari.com/article/4669688>

[Daneshyari.com](https://daneshyari.com)