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We consider the mixing behavior of the solutions to the continuity equation associated 
with a divergence-free velocity field. In this Note, we sketch two explicit examples of 
exponential decay of the mixing scale of the solution, in case of Sobolev velocity fields, 
thus showing the optimality of known lower bounds. We also describe how to use such 
examples to construct solutions to the continuity equation with Sobolev but non-Lipschitz 
velocity field exhibiting instantaneous loss of any fractional Sobolev regularity.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous étudions le comportement de mélange de solutions de l’équation de continuité 
associée à un champ de vitesse à divergence nulle. Dans cette note, nous décrivons 
deux exemples explicites de décroissance exponentielle de l’échelle de mélange de la 
solution. Dans le cas des champs de vitesse Sobolev, nous montrons donc l’optimalité des 
estimations par dessous connues. Nous décrivons aussi comment utiliser de tels exemples 
pour construire des solutions de l’équation de continuité à champs de vitesse Sobolev 
mais non lipschitziens : ces solutions perdent immédiatement toute régularité Sobolev 
fractionnaire.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Consider a passive scalar ρ , which is advected by a time-dependent, divergence-free velocity field u on the two-
dimensional torus, i.e., a solution ρ to the continuity equation with velocity field u:{

∂tρ + div(uρ) = 0,

ρ(0, ·) = ρ̄,
on R

+ ×T
2. (1)
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We assume that the initial datum ρ̄ satisfies 
∫
T2 ρ̄ = 0 (this condition is, at least formally, preserved under the time evolu-

tion) and we are interested in the mixing behavior of ρ(t, ·) as t tends to +∞.
In order to quantify the level of “mixedness”, two different notions of mixing scale are available in the literature. The 

first one is based on homogeneous negative Sobolev norms (see, for instance, [10,12]), the most common one being the 
Ḣ−1 norm, which should be viewed as a characteristic length of the mixing in the system (here and in the following, we 
use the dot as in Ḣ−1 to denote the homogeneous Sobolev norm):

Definition 1. The functional mixing scale of ρ(t, ·) is ‖ρ(t, ·)‖Ḣ−1(T2) .

The second notion (see [5]) is geometric and has been introduced for solutions with value ±1:

Definition 2. Given 0 < κ < 1/2, the geometric mixing scale of ρ(t, ·) is the infimum ε(t) of all ε > 0 such that for every 
x ∈ T

2, there holds

κ ≤ L2({ρ(t, ·) = 1} ∩ Bε(x))

L2(Bε(x))
≤ 1 − κ, (2)

where L2 denotes the two-dimensional Lebesgue measure and Bε(x) is the ball of radius ε centered at x.

The parameter κ is fixed and plays a minor role in the definition. Informally, in order for ρ(t, ·) to have geometric 
mixing scale ε(t), we require that every ball of radius ε(t) contains a substantial portion of both level sets {ρ(t, ·) = 1} and 
{ρ(t, ·) = −1}.

Although, strictly speaking, the two notions above are not equivalent (see the discussion in [11]), they are heuristically 
very related, and indeed most of the results in this area are available considering any of the two definitions.

The mixing process is studied in the literature under energetic constraints on the velocity field, that is, assuming that the 
velocity field is bounded with respect to some spatial norm, uniformly in time. We now briefly review some of the related 
literature (most of the results hold indeed in any space dimension).

(a) The velocity field u is bounded in Ẇ s,p(T2) uniformly in time for some s < 1 and 1 ≤ p ≤ ∞ (the case s = 0, p = 2, 
often referred to as energy-constrained flow, is of particular interest in applications). In this case, the Cauchy problem 
for the continuity equation (1) is not uniquely solvable in general (see [1,2]). It is therefore possible to find a velocity 
field and a bounded solution that is non-zero at the initial time, but is identically zero at some later time. This fact 
means that it is possible to have perfect mixing in finite time, as already observed in [10] and established in [11] for 
s = 0, building on an example from [7,5].

(b) The velocity field u is bounded in Ẇ 1,p(T2) uniformly in time for some 1 ≤ p ≤ ∞ (the case p = 2, often referred to 
as enstrophy-constrained flow, is of particular interest in applications). In this case, the results in [8] ensure uniqueness 
for the Cauchy problem (1), while for p > 1 the quantitative Lipschitz estimates for regular Lagrangian flows in [6]
provide an exponential lower bound on the geometric mixing scale, ε(t) ≥ C exp(−ct). The extension to the borderline 
case p = 1 is still open (see, however, [4]). For the same class of velocity fields, an exponential lower bound for the 
functional mixing scale, ‖ρ(t, ·)‖Ḣ−1 ≥ C exp(−ct), has been proved in [9,13].

(c) For velocity fields bounded in ḂV(T2) uniformly in time, the results in [3] ensure uniqueness for the Cauchy problem (1). 
It was recognized in [5] that an exponential decay of the geometric mixing scale can indeed be attained for velocity 
fields bounded in ḂV(T2) uniformly in time, and actually the same example works also for the functional mixing scale.

(d) The velocity field u is bounded in Ẇ s,p(T2) uniformly in time for some s > 1 (here the case of interest in applications 
is that of palenstrophy-constrained flows, that is, s = 2 and p = 2). In this case, there are no better lower bounds for the 
decay of the (functional or geometric) mixing scale than the exponential one obtained for s = 1. The common belief, 
supported also by the numerical simulations in [11,9], is that this bound is optimal.

In this note, we sketch two examples in which both the functional and the geometric mixing scales decay exponentially 
with a velocity field bounded in Ẇ 1,p(T2) uniformly in time (for every 1 ≤ p < ∞ in the first example, and for every 
1 ≤ p ≤ ∞ in the second example, thus including the Lipschitz case). These results show the sharpness of the lower bounds 
in [6,13,9] (point (b) above), for the full range 1 ≤ p ≤ ∞. Our examples can be seen as a Sobolev (or even Lipschitz) variant 
of the example in point (c).

Moreover, we describe how such constructions can be employed to obtain counterexamples to the propagation of any 
fractional Sobolev regularity for solutions to the continuity equation (1) in Rd , when the velocity field belongs to Sobolev 
classes that do not embed in the Lipschitz space.

After the completion of the present work, we were made aware of a related result obtained independently by Yao and 
Zlatoš [14], which provides examples of mixing of general initial data, with a rate that is optimal in the range 1 ≤ p ≤ p̄ for 
some p̄ > 2.
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