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In this note, we consider the non-negative least-square method with a random matrix. This 
problem has connections with the probability that the origin is not in the convex hull of 
many random points. As related problems, suitable estimates are obtained as well on the 
probability that a small ball does not hit the convex hull.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, nous appliquons la méthode des moindres carrés non négatifs d’une 
matrice aléatoire. Ce problème est connecté à la probabilité que l’enveloppe convexe de 
points aléatoires ne contienne pas l’origine. En relation avec ce problème, nous obtenons 
aussi des estimations de la probabilité qu’une petite boule ne rencontre pas une enveloppe 
convexe.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let n and m be two positive integers with n ≤ m. Suppose that A is an n × m matrix and b is a vector in Rn . In 
mathematical optimization and other research fields, it is frequent to consider the non-negative least square solution to a 
linear system AX = b with X = (x1, x2, . . . , xm)T ∈ R

m under the constraint min1≤i≤m xi ≥ 0. The non-negativity constraints 
occur naturally in various models involving non-negative data; see [1,4], and [7]. More generally, for non-negative random 
designs, the matrix A is assumed to be random; see [3] and references therein for this aspect.

The first topic of this note is to investigate the probability P{AX = b, min1≤i≤m xi ≥ 0} when A is a random matrix with 
suitable restrictions; see Theorem 2.1. The idea of the proof is to change this probability to the one involving the event that 
the origin is not in the convex hull of many random points, and then apply a well-known result by Wendel [11]. However, 
instead of applying Wendel’s result directly, we propose a new probabilistic proof of it. This probabilistic proof allows us to 
work on a more general probability of hitting a convex hull by a small ball (instead of the origin) in Rn ; see Theorem 4.1.

The study on random convex hulls dates back to 1960s from various perspectives. For instance, in [10] and [2] the 
expected perimeter of a random convex hull was derived. The expected number of edges of a random convex hull was 
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obtained in [9]. For expected area or volume of a random convex hull, we refer to [5]. As mentioned earlier, in [11] the 
probability that the origin does not belong to a random convex hull was perfectly established. In Section 3, we derive an 
explicit form for the probability that a ball with a small radius δ in R2 does not belong to the convex hull of many i.i.d. 
random points; see Theorem 3.1. This type of probability was considered in [6] together with circle coverage problems. 
Because of addition assumptions there, unfortunately the results (Corollary 4.2 and Example 4.1) in [6] cannot recover our 
result (Theorem 3.1 in this note). A more detailed survey on random convex hulls is included in [8].

2. A linear system with a random matrix

Since the one-dimension n = 1 is trivial, we consider higher dimensions n ≥ 2. In the proof of the next result, a connec-
tion is established between the probabilities of hitting a convex hull and the non-negative solutions to a linear system.

Theorem 2.1. Let A be an n × m, 2 ≤ n ≤ m, matrix such that the entries are independent non-negative continuous random vari-
ables. Suppose that these random variables have the same mean μ, and are symmetric about the mean. Then the linear system 
AX = (1, 1, . . . , 1)T has a non-negative solution with probability:

1 − 2−m+1
n−2∑
k=0

(
m − 1

k

)
.

When m = n, it simplifies to 2−n+1.

Proof. We set the entries of A as {aij}, then 
∑m

j=1 aij x j = 1 for 1 ≤ i ≤ n. Summing over i, we obtain 
∑m

j=1(
∑n

i=1 aij)x j = n. 
Let c j = 1

n

∑n
i=1 aij , then 

∑m
j=1 c j x j = 1. Thus, we can rewrite the linear system 

∑m
j=1 aij x j = 1 as 

∑m
j=1(aij − c j)x j = 0. 

Let a1, . . . , am be the column vectors of A, and v = (1, 1, . . . , 1)T . If we denote w j = a j − c jv, then the linear system ∑m
j=1 aij x j = 1 for 1 ≤ i ≤ n has a non-negative solution if and only if there exist x1, x2, . . . , xm ≥ 0 with x1 +x2 + . . .+xm > 0

such that 
∑m

j=1 x jw j = 0. In other words, the origin 0 belongs to the convex hull of {w1, w2, . . . , wm}. We show that {w j}
are symmetric. Indeed,

P
{

w j > (t1, t2, . . . , tn)T }
= P

{
aij − 1

n

n∑
k=1

akj > ti,1 ≤ i ≤ n

}
= P

{
1

n

n∑
k=1

(aij − akj) > ti,1 ≤ i ≤ n

}

= P

{
1

n

n∑
k=1

[
(μ − aij) − (μ − akj)

]
> ti,1 ≤ i ≤ n

}

= P

{
−1

n

n∑
k=1

(aij − akj) > ti,1 ≤ i ≤ n

}
= P

{−w j > (t1, t2, . . . , tn)T }
.

Clearly, {w j} are random vectors in Rn that lie on the hyperplane L = {(y1, y2, . . . , yn) ∈ R
n : y1 + y2 + . . . + yn = 0}. Let 

p(k, m) be the probability that 0 does not belong to the convex hull of m symmetric random vectors in Rn that lie on a 
k-dimensional subspace of Rn . We now compute the probability p(n − 1, m). The method below is a probability version 
of a geometric argument of Wendel [11]. Let h be the indicator function of the event 0 /∈ conv(w1, w2, . . . , wm). That is, 
h(w1, w2, . . . , wm) = 1 if there exists a non-zero vector b such that 〈wi, b〉 ≥ 0 for all 1 ≤ i ≤ m, and h(w1, w2, . . . , wm) = 0
otherwise. Then,

p(n − 1,m) = P
{

0 /∈ conv(w1,w2, . . . ,wm)
} = Ewh(w1,w2, . . . ,wm).

Because {wi} are symmetric, if we let {εi} be i.i.d. Bernoulli random variables, then

p(n − 1,m) = EεEwh(ε1w1, ε2w2, . . . , εmwm).

Noticing that conditioning on ε′ = (ε1, ε2, . . . , εm−1), we have

p(n − 1,m) = Eε′EwEεmh(ε1w1, ε2w2, . . . , εmwm) = 1

2
Eε′EwEεmh(ε1w1, ε2w2, . . . , εm−1wm−1)

+ 1

2
Eε′Ew

[
2Eεmh(ε1w1, ε2w2, . . . , εmwm) − h(ε1w1, ε2w2, . . . , εm−1wm−1)

]
= 1

2
p(n − 1,m − 1) + 1

2
Eε′Ew R

where
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