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In this article, we compute the weighted log canonical thresholds of toric plurisubharmonic 
functions, i.e. convex increasing functions of the logarithms of the absolute values of their 
complex arguments.
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r é s u m é

Dans cet article, nous calculons les seuils log canoniques pondérés des fonctions plurisous-
harmoniques toriques, c’est-à-dire s’exprimant comme des fonctions convexes croissantes 
des logarithmes des modules de leurs arguments complexes.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

Let Ω be a domain in Cn and ϕ in the set PSH(Ω) of plurisubharmonic functions on Ω . Following Demailly and Kollár 
[6], we introduce the log canonical threshold of ϕ at a point z0 ∈ Ω:

cϕ(z0) = sup
{

c > 0 : e−2c ϕ is L1(dV 2n) on a neighborhood of z0
} ∈ (0,+∞],

where dV 2n is the Lebesgue measure in Cn . It is an invariant of the singularity of ϕ at z0. We refer to [1,3–7,9,10,8,13]
for further information about this number. For every non-negative Radon measure μ on Ω , we introduce the weighted log 
canonical threshold of ϕ with weight μ at z0:

cϕ,μ(z0) = sup
{

c > 0 : e−2c ϕ is L1(dμ) on a neighborhood of z0
} ∈ [0,+∞].
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For every ϕ in the set PSH−(�n) of negative plurisubharmonic functions on the polydisc �n , we consider Kiselman’s refined 
Lelong numbers of ϕ at 0 (see [2,12]):

νϕ(x) = lim
t→−∞

max{ϕ(z) : |z1| = etx1 , . . . , |zn| = etxn }
t

.

This function is increasing in each variable x j and concave on Rn+ = [0, +∞)n . We set

ϕ̄(z) = −νϕ

(− ln |z1|, ...,− ln |zn|
)
.

We have ϕ ≤ ϕ̄ and ϕ̄ is a function in the set TPSH−(�n) of toric negative plurisubharmonic functions on �n , it mean 
that ϕ̄(z) = ϕ̄(|z1|, ..., |zn|) depends only on |z1|, ..., |zn|.

For each function f (z) = aα1 zα1 + aα2 zα2 + ... (with aαk �= 0) in the ring OCn,0 of germs of holomorphic functions at 
0, we define I f to be the ideal generated by {zα1

, zα2
, ...}. From Noetherian property of the ring OCn,0, I f is generated 

by finite elements {zα1
, zα2

, ..., zαm }. The main result is contained in the following theorem, which is a generalization of 
Theorem 5.8 in [12] (see also [11] for similar results in an algebraic context).

Main theorem. Let ϕ ∈ TPSH−(�n) and a non-negative Radon measure μ on �n. Assume that μ(�r1 × ... × �rn ) = O (1)×∑m
k=1 r2sk1

1 ...r2skn
n (sk1, ..., skn > 0, ∀1 ≤ k ≤ m) for all r1, ..., rn > 0, where O (1) is a positive constant and �r is the disc of center 0

and radius r. Then

cϕ,μ(0) =
(

max

{
νϕ(x) : x ∈R

n+, ∃k = 1, ...,m,

n∑
j=1

skj x j = 1

})−1

.

Corollary. Let ϕ ∈ TPSH−(�n) and f ∈OCn,0 . Assume that I f is generated by {zα1
, zα2

, ..., zαm } with αk = (αk
1, ..., α

k
n). Then for all 

p > 0 we have:

cϕ,| f |2p dV 2n
(0) =

(
max

{
νϕ(x) : x ∈R

n+,∃k = 1, ...,m,

n∑
j=1

(
pαk

j + 1
)
x j = 1

})−1

.

2. Proof of the main theorem

First, we need the following lemmas.

Lemma 2.1. i) Let ϕ ∈ TPSH−(�n). Then for all ε > 0, there exists δ > 0 and C < 0 such that

ϕ(z) ≥ ϕ̄(z) + ε

(
n∑

j=1

ln |z j|
)

+ C, ∀z ∈ �n
δ .

ii) Let ϕ ∈ TPSH−(�n) and a non-negative Radon measure μ on �n. Assume that cln |z j |,μ(0) > 0 for all 1 ≤ j ≤ n. Then

cϕ,μ(0) = cϕ̄,μ(0).

Proof. i) Take 0 < ε1 < ε . Since limr→0
ϕ(r,...,r)

ln r = νϕ(1, ..., 1) = e1(ϕ), we can find δ > 0 such that

ϕ(r, ..., r) ≥ (
e1(ϕ) + ε1

)
ln r, ∀r ∈ (0, δ).

It follows that

ϕ(z) ≥ ϕ
(

min
1≤ j≤n

|z j|, ..., min
1≤ j≤n

|z j|
)

≥ (
e1(ϕ) + ε1

)
ln

(
min

1≤ j≤n
|z j|

)
≥ (

e1(ϕ) + ε1
) n∑

j=1

ln |z j|, ∀z ∈ �n
δ . (1)

Set Σ = {x ∈R
n+ : ∑n

j=1 x j = 1}. Since limt→−∞ ϕ(etx1 ,...,etxn )
t = νϕ(x), for each x ∈ Σ , we can find t(x) < 0 such that

ϕ
(
etx1 , ...,etxn

) ≥ [
νϕ(x) + ε1

]
t, ∀t ≤ t(x).

Set C(x) = ϕ(et(x)x1 , ..., et(x)xn ). We have:

ϕ
(
etx1 , ...,etxn

) ≥ [
νϕ(x) + ε1

]
t + C(x), ∀t ≤ 0. (2)
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