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RESUME

Dans cet article, nous calculons les seuils log canoniques pondérés des fonctions plurisous-
harmoniques toriques, c’est-a-dire s’exprimant comme des fonctions convexes croissantes
des logarithmes des modules de leurs arguments complexes.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

Let £2 be a domain in C" and ¢ in the set PSH(£2) of plurisubharmonic functions on §2. Following Demailly and Kollar
[6], we introduce the log canonical threshold of ¢ at a point zg € £2:

cy(z0) =sup{c>0: e 2% is L1(dV>y,) on a neighborhood of 20} € (0, +00],
where dVy, is the Lebesgue measure in C". It is an invariant of the singularity of ¢ at zo. We refer to [1,3-7,9,10,8,13]
for further information about this number. For every non-negative Radon measure @ on §2, we introduce the weighted log

canonical threshold of ¢ with weight p at zp:

cp.u(20) =supfc > 0: e7*? is L' (du) on a neighborhood of zo} € [0, +oc].
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For every ¢ in the set PSH™(A™) of negative plurisubharmonic functions on the polydisc A", we consider Kiselman’s refined
Lelong numbers of ¢ at 0 (see [2,12]):

. __ alXy — alXn
. max Z)|Z1|=¢e", ..., |Zg| =€
o= tim M@ 20l =)
t——00 t

This function is increasing in each variable x; and concave on ]R"+ = [0, +00)". We set

@(2) = —vy(—In|z1], ..., —In|z]).

We have ¢ < ¢ and ¢ is a function in the set TPSH™ (A") of toric negative plurisubharmonic functions on A", it mean
that ¢(2) = @(|z1], ..., |za]) depends only on |z1], ..., |z4].

For each function f(z) = aalz"‘] + ao[zz"‘2 + ... (with ayx # 0) in the ring Ocn o of germs of holomorphic functions at
0, we define Zy to be the ideal generated by {Zo‘l,zo‘z, ...}. From Noetherian property of the ring Ocn o, Zy is generated

by finite elements {z"‘l,zo‘z, ...,z%"}. The main result is contained in the following theorem, which is a generalization of
Theorem 5.8 in [12] (see also [11] for similar results in an algebraic context).

Main theorem. Let ¢ € TPSH™(A") and a non-negative Radon measure  on A". Assume that ((Ar, X ... X Ap) = 0(1) x

kazl r%s’“ ...rﬁs"” (Sk1s oy Skn >0, Y1 <k <m)forallry, ...,y > 0, where O (1) is a positive constant and A, is the disc of center 0
and radius r. Then

-1
n

Cpu(0) = (max[w,(x) :XxeRY, 3k=1,...,m,Zsijj=l]) :
j=1

2

Corollary. Let ¢ € TPSH™ (A") and f € Ocn o. Assume that Iy is generated by {z"‘1 2% 29" with ok = (oz’f, a’é). Then for all

p > 0 we have:
n 1
Co. [PV, (0) = (max[v(p(x) cxeRY,Ik=1,..,m, Z(pa’; +1)xj=1 I) .
j=1

2. Proof of the main theorem
First, we need the following lemmas.

Lemma 2.1. i) Let ¢ € TPSH™ (A™). Then for all € > 0, there exists § > 0 and C < 0 such that

n
$(2) =92 +€(Z ln|zj|) +C, VzeAj.

j=1
ii) Let ¢ € TPSH™ (A") and a non-negative Radon measure (1 on A". Assume that cj, 121, (0) > Oforall1 < j<n.Then

Co,u(0) =g, (0).

Proof. i) Take 0 < €1 < €. Since lim,_,¢ W

=vy(1,...,1) =e1(p), we can find § > 0 such that

@, ...1 = (e1(¢) +€1)Inr, Vre(0,9).
It follows that

n
zZ) > (min Zil, ..., min z-)z e +e€ ln(min z-)z e +e€ In|zi|, Vze Al 1
9@ =¢(min izjl.... min |zj]) = (e1(¢) + &) In( min |zj]) = (e1(¢) 1)]; 121 ; (1)
Set ¥ ={xeR: 2?21"1':1}- Since limfﬁ_mwsz(x), for each x € X, we can find t(x) < 0 such that

@™, ...e™) > [v, () +e]t, VE<t).

Set C(x) = @(ef®@x1  f®xn) We have:

@™, ...e") > [vy(x) + €]t +C(x), Vt=<0. @)
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