FISEVIER

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Complex analysis

The weighted log canonical thresholds of toric plurisubharmonic functions

Seuils log canoniques pondérés des fonctions plurisousharmoniques toriques

Pham Hoang Hiep^a, Trinh Tung^b

ARTICLE INFO

Article history: Received 27 October 2014 Accepted 5 November 2014 Available online 1 December 2014

Presented by Jean-Pierre Demailly

ABSTRACT

In this article, we compute the weighted log canonical thresholds of toric plurisubharmonic functions, i.e. convex increasing functions of the logarithms of the absolute values of their complex arguments.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cet article, nous calculons les seuils log canoniques pondérés des fonctions plurisousharmoniques toriques, c'est-à-dire s'exprimant comme des fonctions convexes croissantes des logarithmes des modules de leurs arguments complexes.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

Let Ω be a domain in \mathbb{C}^n and φ in the set $PSH(\Omega)$ of plurisubharmonic functions on Ω . Following Demailly and Kollár [6], we introduce the log canonical threshold of φ at a point $z_0 \in \Omega$:

$$c_{\varphi}(z_0) = \sup\{c > 0: e^{-2c\varphi} \text{ is } L^1(\mathrm{d}V_{2n}) \text{ on a neighborhood of } z_0\} \in (0, +\infty],$$

where dV_{2n} is the Lebesgue measure in \mathbb{C}^n . It is an invariant of the singularity of φ at z_0 . We refer to [1,3–7,9,10,8,13] for further information about this number. For every non-negative Radon measure μ on Ω , we introduce the weighted log canonical threshold of φ with weight μ at z_0 :

$$c_{\varphi,\mu}(z_0) = \sup\{c > 0 : e^{-2c\varphi} \text{ is } L^1(d\mu) \text{ on a neighborhood of } z_0\} \in [0, +\infty].$$

E-mail addresses: phhiep_vn@yahoo.com (P.H. Hiep), tungtrinhvn@gmail.com (T. Tung).

a Department of Mathematics, Hanoi National University of Education, Viet Nam

^b Department of Mathematics, Hanoi University of Sciences, Viet Nam

For every φ in the set PSH⁻(Δ^n) of negative plurisubharmonic functions on the polydisc Δ^n , we consider Kiselman's refined Lelong numbers of φ at 0 (see [2,12]):

$$v_{\varphi}(x) = \lim_{t \to -\infty} \frac{\max\{\varphi(z) : |z_1| = e^{tx_1}, \dots, |z_n| = e^{tx_n}\}}{t}.$$

This function is increasing in each variable x_i and concave on $\mathbb{R}^n_+ = [0, +\infty)^n$. We set

$$\bar{\varphi}(z) = -\nu_{\varphi} \left(-\ln|z_1|, ..., -\ln|z_n| \right).$$

We have $\varphi \leq \bar{\varphi}$ and $\bar{\varphi}$ is a function in the set TPSH⁻(Δ^n) of toric negative plurisubharmonic functions on Δ^n , it mean that $\bar{\varphi}(z) = \bar{\varphi}(|z_1|,...,|z_n|)$ depends only on $|z_1|,...,|z_n|$.

For each function $f(z)=a_{\alpha^1}z^{\alpha^1}+a_{\alpha^2}z^{\alpha^2}+...$ (with $a_{\alpha^k}\neq 0$) in the ring $\mathcal{O}_{\mathbb{C}^n,0}$ of germs of holomorphic functions at 0, we define \mathcal{I}_f to be the ideal generated by $\{z^{\alpha^1},z^{\alpha^2},...\}$. From Noetherian property of the ring $\mathcal{O}_{\mathbb{C}^n,0}$, \mathcal{I}_f is generated by finite elements $\{z^{\alpha^1},z^{\alpha^2},...,z^{\alpha^m}\}$. The main result is contained in the following theorem, which is a generalization of Theorem 5.8 in [12] (see also [11] for similar results in an algebraic context).

Main theorem. Let $\varphi \in \text{TPSH}^-(\Delta^n)$ and a non-negative Radon measure μ on Δ^n . Assume that $\mu(\Delta_{r_1} \times ... \times \Delta_{r_n}) = O(1) \times \sum_{k=1}^m r_1^{2s_{k1}} ... r_n^{2s_{kn}} (s_{k1}, ..., s_{kn} > 0, \ \forall 1 \leq k \leq m)$ for all $r_1, ..., r_n > 0$, where O(1) is a positive constant and Δ_r is the disc of center 0 and radius r. Then

$$c_{\varphi,\mu}(0) = \left(\max \left\{ \nu_{\varphi}(x) : x \in \mathbb{R}^n_+, \ \exists k = 1, ..., m, \sum_{j=1}^n s_{kj} x_j = 1 \right\} \right)^{-1}.$$

Corollary. Let $\varphi \in \text{TPSH}^-(\Delta^n)$ and $f \in \mathcal{O}_{\mathbb{C}^n,0}$. Assume that \mathcal{I}_f is generated by $\{z^{\alpha^1},z^{\alpha^2},...,z^{\alpha^m}\}$ with $\alpha^k = (\alpha_1^k,...,\alpha_n^k)$. Then for all p > 0 we have:

$$c_{\varphi,|f|^{2p}dV_{2n}}(0) = \left(\max\left\{\nu_{\varphi}(x) : x \in \mathbb{R}^{n}_{+}, \exists k = 1, ..., m, \sum_{i=1}^{n} (p\alpha_{j}^{k} + 1)x_{j} = 1\right\}\right)^{-1}.$$

2. Proof of the main theorem

It follows that

First, we need the following lemmas.

Lemma 2.1. i) Let $\varphi \in TPSH^-(\Delta^n)$. Then for all $\epsilon > 0$, there exists $\delta > 0$ and C < 0 such that

$$\varphi(z) \ge \bar{\varphi}(z) + \epsilon \left(\sum_{j=1}^{n} \ln|z_j|\right) + C, \quad \forall z \in \Delta_{\delta}^{n}.$$

ii) Let $\varphi \in \text{TPSH}^-(\Delta^n)$ and a non-negative Radon measure μ on Δ^n . Assume that $c_{\ln |z_j|,\mu}(0) > 0$ for all $1 \le j \le n$. Then $c_{\varphi,\mu}(0) = c_{\bar{\varphi},\mu}(0)$.

Proof. i) Take $0 < \epsilon_1 < \epsilon$. Since $\lim_{r \to 0} \frac{\varphi(r,...,r)}{\ln r} = \nu_{\varphi}(1,...,1) = e_1(\varphi)$, we can find $\delta > 0$ such that

 $\varphi(r,...,r) \ge (e_1(\varphi) + \epsilon_1) \ln r, \quad \forall r \in (0,\delta).$

$$\varphi(z) \ge \varphi\left(\min_{1 \le j \le n} |z_j|, \dots, \min_{1 \le j \le n} |z_j|\right) \ge \left(e_1(\varphi) + \epsilon_1\right) \ln\left(\min_{1 \le j \le n} |z_j|\right) \ge \left(e_1(\varphi) + \epsilon_1\right) \sum_{j=1}^n \ln|z_j|, \quad \forall z \in \Delta_\delta^n. \tag{1}$$

Set $\Sigma = \{x \in \mathbb{R}^n_+ : \sum_{j=1}^n x_j = 1\}$. Since $\lim_{t \to -\infty} \frac{\varphi(e^{tx_1}, \dots, e^{tx_n})}{t} = \nu_{\varphi}(x)$, for each $x \in \Sigma$, we can find t(x) < 0 such that $\varphi(e^{tx_1}, \dots, e^{tx_n}) \ge \left[\nu_{\varphi}(x) + \epsilon_1\right]t$, $\forall t \le t(x)$.

Set $C(x) = \varphi(e^{t(x)x_1}, ..., e^{t(x)x_n})$. We have:

$$\varphi(e^{tx_1}, ..., e^{tx_n}) \ge [\nu_{\varphi}(x) + \epsilon_1]t + C(x), \quad \forall t \le 0.$$

Download English Version:

https://daneshyari.com/en/article/4669778

Download Persian Version:

https://daneshyari.com/article/4669778

<u>Daneshyari.com</u>