

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Noncommutative affine spaces and Lie-complete rings

STOTION STOTION

CrossMark

Espaces affines non commutatifs et anneaux de Lie complets

Anar Dosi

Middle East Technical University, Northern Cyprus Campus, Guzelyurt, KKTC, Mersin 10, Turkey

ARTICLE INFO

Article history: Received 11 April 2013 Accepted 23 October 2014 Available online 3 December 2014

Presented by the Editorial Board

ABSTRACT

In this paper, we investigate the structure sheaves of an (infinite-dimensional) affine NC-space $\mathbb{A}_{\mathrm{nc}, \mathfrak{c}}^{\mathbf{x}}$ affine Lie-space $\mathbb{A}_{\mathrm{lich}}^{\mathbf{x}}$, and their nilpotent perturbations $\mathbb{A}_{\mathrm{nc}, \mathfrak{q}}^{\mathbf{x}}$ and $\mathbb{A}_{\mathrm{lich}, \mathfrak{q}}^{\mathbf{x}}$, respectively. We prove that the schemes $\mathbb{A}_{\mathrm{nc}}^{\mathbf{x}}$ and $\mathbb{A}_{\mathrm{lich}}^{\mathbf{x}}$ are identical if and only if \mathbf{x} is a finite set of variables, that is, when we deal with finite-dimensional noncommutative affine spaces. For each (Zariski) open subset $U \subseteq X = \operatorname{Spec}(\mathbb{C}[\mathbf{x}])$, we obtain the precise descriptions of the algebras $\mathcal{O}_{\mathrm{nc}}(U)$, $\mathcal{O}_{\mathrm{nc},q}(U)$, $\mathcal{O}_{\mathrm{lich},q}(U)$ and $\mathcal{O}_{\mathrm{lich},q}(U)$ of noncommutative regular functions on U associated with the schemes $\mathbb{A}_{\mathrm{nc}}^{\mathbf{x}}$, $\mathbb{A}_{\mathrm{nc},q}^{\mathbf{x}}$, $\mathbb{A}_{\mathrm{lich},q}^{\mathbf{x}}$ and $\mathbb{A}_{\mathrm{lich}}^{\mathbf{x}}$, respectively. The obtained result for $\mathcal{O}_{\mathrm{nc}}(U)$ generalizes Kapranov's formula in the finite-dimensional case. Our approach to the matter is based on a noncommutative holomorphic functional calculus in Fréchet algebras.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cette note, nous étudions la structure des faisceaux des NC-espaces $\mathbb{A}_{nc}^{\mathbf{x}}$ et des Lie espaces $\mathbb{A}_{lich}^{\mathbf{x}}$, affines (de dimension infinie), et de leur perturbations nilpotentes $\mathbb{A}_{nc,q}^{\mathbf{x}}$ et $\mathbb{A}_{lich,q}^{\mathbf{x}}$ respectivement. Nous montrons que les schémas $\mathbb{A}_{nc}^{\mathbf{x}}$ et $\mathbb{A}_{lich}^{\mathbf{x}}$ sont identiques si et seulement si x est un ensemble fini de variables, c'est-à-dire lorsqu'on traite des espaces affines non commutatifs de dimension finie. Pour chaque ouvert (de Zariski) $U \subset X = \operatorname{Spec}(\mathbb{C}[\mathbf{x}])$, nous obtenons les descriptions précises des algèbres $\mathcal{O}_{nc}(U)$, $\mathcal{O}_{nc,q}(U)$, $\mathcal{O}_{lich}(U)$ et $\mathcal{O}_{lich,q}(U)$, de fonctions régulières non commutatives sur U, associées aux schémas $\mathbb{A}_{nc}^{\mathbf{x}}$, $\mathbb{A}_{nc,q}^{\mathbf{x}}$, $\mathbb{A}_{lich}^{\mathbf{x}}$ et $\mathbb{A}_{lich,q}^{\mathbf{x}}$, respectivement. Ces résultats pour $\mathcal{O}_{nc}(U)$ généralisent la formule de Kapranov dans le cas où la dimension est finie. De plus, nous montrons que tout anneau Lie complet A est plongé dans $\Gamma(X, \mathcal{O}_A)$ comme sousalgèbre dense pour la topologie I_1 -adique associée à l'idéal bilatère I_1 engendré par tous les commutateurs de A.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

E-mail addresses: dosiev@metu.edu.tr, dosiev@yahoo.com.

URL: http://math.ncc.metu.edu.tr/content/members-dosiev.php.

http://dx.doi.org/10.1016/j.crma.2014.10.020

¹⁶³¹⁻⁰⁷³X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The main idea of scheme-theoretic algebraic geometry is the duality correspondence between commutative rings and affine schemes [10,11]. Based on this duality, noncommutative affine schemes are defined as the dual of the category of associative rings [13,15]. The affine NC-schemes are defined as noncommutative nilpotent thickenings of commutative schemes due to Kapranov [12]. If *A* is a noncommutative associative algebra with its commutativization $A_c = A/\mathcal{I}([A, A])$, then the surjective homomorphism $A \to A_c$ allows us to embed the geometric object $X = \operatorname{Spec}(A_c)$ into an affine NC-scheme (X, \mathcal{O}_A) , which is a ringed space equipped with a noncommutative structure sheaf \mathcal{O}_A of NC-complete algebras. Recall that an associative (complex) algebra *A* can be equipped with an NC-topology defined by the commutator filtration $(F^k(A))_k$, where $F^k(A) = \sum_m \sum_{i_1+\dots+i_m=k} I_{i_1} \cdots I_{i_m}$ and $I_s = \mathcal{I}(A_{\text{lie}}^{(s+1)})$ is the two-sided ideal in *A* generated by the (s+1)-th member of the lower central series $A_{\text{lie}}^{(s-1)}$ of the related Lie algebra A_{lie} . The algebra *A* is called an NC-complete algebra if it is Hausdorff and complete with respect to the NC-topology in *A*. The formal spectrum $X = \operatorname{Spf}(A)$ of an NC-complete algebra A is reduced to $\operatorname{Spf}(A_c)$, and the structure sheaf \mathcal{O}_A is defined as the sheaf of continuous sections of the covering space over *X* defined by the noncommutative topological localizations of A [12]. In particular, the affine NC-space $\mathbb{A}_{nc}^{\mathbf{x}}$ (over the complex field) is defined as the formal scheme $\operatorname{Spf}(\mathcal{O}_{nc}(\mathbf{x}))$ of the NC-completion $\mathcal{O}_{nc}(\mathbf{x})$ of the free associative algebra \mathbb{C}_{nc} .

The formal schemes can be constructed for Lie-complete rings either. Recall that a ring A is said to be a Lie-nilpotent ring if A_{lie} is a nilpotent Lie ring. A Lie-complete ring A is defined as a complete filtered ring associated with a filtration $(J_{\alpha})_{\alpha}$ whose quotients A/J_{α} are Lie-nilpotent rings. They admit topological localizations that are commutative modulo their topological nilradicals (see below Proposition 1.1). The free algebra $\mathbb{C}\langle \mathbf{x} \rangle$ admits various completions that are Lie-complete algebras. First consider the free Lie-nilpotent algebra $B_q(\mathbf{x}) = \mathbb{C}\langle \mathbf{x} \rangle / I_q$ of index q, which is the Hausdorff completion of $\mathbb{C}\langle \mathbf{x} \rangle$ with respect to the filtered topology of the (singleton) filtration (I_q). We have also its I_1 -adic (or NC) completion $\mathcal{O}_{\mathfrak{lich},q}(\mathbf{x})$, which is the Hausdorff completion of $\mathbb{C}\langle \mathbf{x} \rangle$ defined by one of the equivalent filtrations $(I_q + I_1^k)_k$ and $(I_q + F_k)_k$, where $F_k = F_k(\mathbb{C}\langle \mathbf{x} \rangle)$. Actually, $\mathcal{O}_{\mathfrak{lich},q}(\mathbf{x})$ is the NC-completion of $B_q(\mathbf{x})_{\mathfrak{h}} = \mathbb{C}\langle \mathbf{x} \rangle / \overline{I_q}^{\mathfrak{nc}}$, where $\overline{I_q}^{\mathfrak{n}\mathfrak{c}} = \bigcap_m (I_q + F_m)$ is the NC-closure of I_q in $\mathbb{C}\langle \mathbf{x} \rangle$. The completion of $\mathbb{C}\langle \mathbf{x} \rangle$ with respect to the filtration $(\overline{I_k}^{\mathfrak{n}\mathfrak{c}})_k$ is denoted by $\mathcal{O}_{\mathfrak{lie}\mathfrak{h}}(\mathbf{x})$, whereas $\mathcal{O}_{\mathfrak{lie}}(\mathbf{x})$ denotes the completion of $\mathbb{C}\langle \mathbf{x} \rangle$ associated with $(I_k)_k$. Since $\mathbb{C}\langle \mathbf{x} \rangle = \mathcal{U}(\mathfrak{L}(\mathbf{x}))$ is the universal enveloping algebra of the free Lie algebra $\mathfrak{L}(\mathbf{x})$ generated by \mathbf{x} , we have the two-sided ideal $\mathfrak{I}_q = \mathcal{I}(\mathfrak{L}(\mathbf{x})_{\mathfrak{lie}}^{(q+1)})$ in $\mathbb{C}\langle \mathbf{x} \rangle$. The Hausdorff completion $\mathcal{O}_{\mathfrak{nc},q}(\mathbf{x})$ of $\mathbb{C}\langle \mathbf{x} \rangle$ is defined by one of the equivalent filtrations $(\mathfrak{I}_q + I_1^k)_k$ and $(\mathfrak{I}_q + F_k)_k$. Note that it is just I_1 -adic completion of $\mathcal{U}(\mathfrak{g}_q(\mathbf{x}))$, where $\mathfrak{g}_q(\mathbf{x}) = \mathfrak{L}(\mathbf{x})/\mathfrak{L}(\mathbf{x})_{\mathfrak{lie}}^{(q+1)}$ is the free nilpotent Lie algebra of index q generated by \mathbf{x} . Thus we have the Lie-complete algebras $\mathcal{O}_{nc}(\mathbf{x})$, $\mathcal{O}_{nc,q}(\mathbf{x})$, $B_q(\mathbf{x})$, $\mathcal{O}_{\mathfrak{lie}}(\mathbf{x})$, $\mathcal{O}_{\mathfrak{lie}\mathfrak{h},q}(\mathbf{x})$ and $\mathcal{O}_{\mathfrak{lie}\mathfrak{h}}(\mathbf{x})$. Note that $\mathcal{O}_{nc}(\mathbf{x}) = \lim_{\leftarrow} \{\mathcal{O}_{\mathfrak{nc},q}(\mathbf{x})\} = \lim_{\leftarrow} \{\mathcal{O}_{\mathfrak{lie}\mathfrak{h},q}(\mathbf{x})\}$, $\mathcal{O}_{\mathfrak{lie}}(\mathbf{x}) = \lim_{\leftarrow} \{B_q(\mathbf{x})\}$, and $\mathcal{O}_{\mathfrak{lie}\mathfrak{h}}(\mathbf{x}) = \lim_{\leftarrow} \{B_q(\mathbf{x})\}$ up to the topological isomorphisms. The structure sheaves defined by these Lie-complete algebras are denoted by \mathcal{O}_{nc} , $\mathcal{O}_{nc,q}$, B_q , \mathcal{O}_{lie} , $\mathcal{O}_{lieb,q}$ and \mathcal{O}_{lieb} , respectively, and they in turn generate the schemes $\mathbb{A}_{nc}^{\mathbf{x}}$, $\mathbb{A}_{nc,q}^{\mathbf{x}}$, $\mathbb{A}_{lie,q}^{\mathbf{x}}$, $\mathbb{A}_{lieb,q}^{\mathbf{x}}$ and $\mathbb{A}_{lieb}^{\mathbf{x}}$, called noncommutative affine spaces. Note that the (topological) commutativizations of these algebras are reduced to $\mathbb{C}[\mathbf{x}]$ and their formal spectra are reduced to $X = \text{Spec}(\mathbb{C}[\mathbf{x}])$ equipped with the Zariski topology. The identity mapping over X generates the scheme morphisms $\mathbb{A}_{\mathfrak{lie}}^{\mathbf{x}} \to \mathbb{A}_{\mathfrak{lie}\mathfrak{h}}^{\mathbf{x}} \to \mathbb{A}_{\mathfrak{nc}}^{\mathbf{x}}$. In the finite-dimensional case, these morphisms are identical, that is, $\mathbb{A}_{\mathfrak{lie}}^{\mathbf{x}} = \mathbb{A}_{\mathfrak{lie}\mathfrak{h}}^{\mathbf{x}} = \mathbb{A}_{\mathfrak{nc}}^{\mathbf{x}}$ iff $Card(\mathbf{x}) < \infty$. But in the infinite-dimensional case, we have different structure sheaves \mathcal{O}_{nc} and \mathcal{O}_{lich} over X. This is a new phenomenon that appeared in the infinite-dimensional case having the affine Lie-space apart form the affine NC-space. Similar situation takes place for their *q*-versions.

In the present note, we propose descriptions of the structure sheaves associated with these noncommutative affine spaces. Our approach to the matter is based on the formally-radical holomorphic functions $\mathcal{F}_{g}(U)$ in elements of a nilpotent Lie algebra g developed in [2,3] (see also [1]). The Fréchet algebras of noncommutative holomorphic functions have been developed to implement Taylor's program on the noncommutative holomorphic functional calculus for operator families generating a nilpotent Lie algebra [3–7].

2. The structure sheaf of a Lie-complete ring

Let *A* be a filtered ring with its filtration $\mathfrak{a} = (J_{\alpha})_{\alpha}$, $S \subseteq A \setminus \{0\}$ a (topologically) closed and multiplicatively closed subset in *A* satisfying the following *topological right* (similarly, *left*) *Ore conditions:*

(*TR*1) for $s \in S$ and $a \in A$ there exist nets $(t_t) \subseteq S$ and $(b_t) \subseteq A$ such that $\lim_{t \to a} (sb_t - at_t) = 0$;

(*TR2*) if $sa \in J_{\alpha}$ with $s \in S$ and $a \in A$, then $at \in J_{\alpha}$ for some $t \in S$.

Then *A* admits the topological localization $A[S^{-1}]$ of right (respectively, left) fractions, which is a complete filtered ring with its continuous ring homomorphism $\varphi : A \to A[S^{-1}]$ such that $\varphi(S) \subseteq A[S^{-1}]^*$ (consists of units) and $\{\varphi(a)\varphi(s)^{-1} : a \in A, s \in S\}$ is dense in $A[S^{-1}]$. The filtered ring $A[S^{-1}]$ possesses the following universal property. If $\psi : A \to B$ is a continuous ring homomorphism into another complete filtered ring *B* such that $\psi(S) \subseteq B^*$, then there exists a unique continuous ring homomorphism $\sigma : A[S^{-1}] \to B$ such that $\sigma \cdot \varphi = \psi$.

Now let *A* be a Lie-complete ring with its topological nilradical $\mathfrak{Tnil}(A) = \{a \in A : \lim_n a^n = 0\}$, and $X = \mathrm{Spf}(A)$. Then $X = \mathrm{Spf}(A_c)$ is a topological space equipped with a Zariski topology, and $\mathfrak{Tnil}(A) = \bigcap \{\mathfrak{p} : \mathfrak{p} \in \mathrm{Spf}(A)\}$, where $A_c = A/\overline{I_1}$. If I_1 is open (in particular, $\mathfrak{Tnil}(A)$ is open), then $X = \mathrm{Spec}(A_c)$. Note that I_1 is open for an NC-complete ring *A*.

Download English Version:

https://daneshyari.com/en/article/4669782

Download Persian Version:

https://daneshyari.com/article/4669782

Daneshyari.com