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Based on the periodic unfolding method in periodic homogenization, we deduce a con-
vergence result for gradients of functions defined on connected, smooth, and periodic
manifolds. Under the assumption of certain a-priori estimates of the gradient, which are
typical for fast diffusion, the sum of a term involving a gradient with respect to the slow
variable and one with respect to the fast variable is obtained in the homogenization limit.
In addition, we show in a brief example how to apply this result and find for a reaction–
diffusion equation defined on a periodic manifold that the homogenized equation contains
a term describing macroscopic diffusion.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

À l’aide de la méthode d’éclatement périodique, nous démontrons un résultat de conver-
gence des gradients de fonctions définies sur des variétés connexes, différentiables et
périodiques. Sous certaines conditions d’estimation du gradient, typiques de la diffusion
rapide, nous obtenons à la limite d’homogénéisation la somme d’un gradient de la variable
globale et d’un gradient de la variable locale. Un exemple illustre l’utilisation de ce résul-
tat : pour une équation de réaction et diffusion définie sur une variété périodique, nous
démontrons que l’équation homogénéisée contient un terme décrivant une diffusion glo-
bale.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Setting

The periodic unfolding method is a technique to homogenize partial differential equations. The main idea is the intro-
duction of an operator Tε , which maps a function ϕε defined on a finely structured periodic domain Ωε ⊂ Rn to a function
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Tε(ϕε) defined on Ω × Y , where Y = [0,1]n is the periodicity cell. With Ω ⊂ Rn being homogeneous, the domain of the
function Tε(ϕε) is independent of ε and hence, we are able to use well-known convergence results from functional analysis.

The periodic unfolding method was developed in [3–6] based on ideas of [2]. It is the purpose of this note to extend these
results by a weak compactness result for H1-functions defined on a periodic manifold satisfying certain bounds (Theorem 4
below). These arise in problems involving fast surface diffusion, cf. Section 4. For utilization in the proof of Theorem 4, we
also show an extension lemma (Lemma 5), which may be useful in related contexts as well.

We briefly describe the setting and summarize important results required in what follows. Let Ω ⊂ Rn be a domain,
and further let Ωε = ⋃

k∈Zn ε(k + Y ) ∩ Ω and Γε = ⋃
k∈Zn ε(k + Γ ) ∩ Ω be sets with periodic fine-structure with unit cell

Y = [0,1]n and a smooth manifold Γ ⊂ Y , such that Γε is smooth and connected and Ω is representable by a finite union of
axis-parallel cuboids, each of which is assumed to have corner coordinates in Qn . This last technical assumption is required
in order to use a certain extension operator, cf. Remark 6. Note that there also exist recent works in the context of periodic
unfolding and manifolds, where the manifold itself is not periodic but has a periodic pattern on its surface [7], which is
different from the setting considered here.

Let Ξε := {ξ ∈ Zn | ε(ξ + Y ) ⊂ Ω} and Ω̂ε := interior{⋃ξ∈Ξε
ε(ξ + Y )}.

For every z ∈ Rn , we define [z]Y as the unique integer combination
∑n

i=1 kiei of the periods such that {z}Y = z−[z]Y ∈ Y .
The periodic unfolding operator Tε is then defined as follows [4]:

Definition 1. Let ϕ ∈ Lp(Ωε), p ∈ [1,∞]. For any ε > 0, we define Tε : Lp(Ωε) → Lp(Ω × Y ) such that

[
Tε(ϕ)

]
(x, y) = ϕ

(
ε

[
x

ε

]
Y

+ εy

)
a.e. for (x, y) ∈ Ω̂ε × Y ,

[
Tε(ϕ)

]
(x, y) = 0 a.e. for (x, y) ∈ Ω\Ω̂ε × Y .

The main advantage of using the periodic unfolding operator is that Tε(ϕ) is defined on the fixed domain Ω × Y even
for varying ε. Thus, we may use standard convergence results from functional analysis. For example, the following weak
compactness result in H1 is proven in [5]. It is the main ingredient in identifying the limit problem when homogenizing
typical reaction–diffusion equations stated on Ωε .

Theorem 2. For every ε > 0, let ϕε be in H1(Ωε) and let ‖ϕε‖H1(Ωε) be bounded independently of ε. Then there exist ϕ ∈ H1(Ω)

and ϕ̂ ∈ L2(Ω, H1
per(Y )) such that, up to a subsequence,

Tε(ϕε)
ε→0
⇀ ϕ weakly in L2(Ω, H1

per(Y )
)
, Tε(∇xϕε)

ε→0
⇀ ∇xϕ + ∇yϕ̂ weakly in L2(Ω, L2(Y )

)
.

When internal boundary terms are to be homogenized, e.g. arising from interface conditions or surface concentrations,
the boundary periodic unfolding operator T b

ε is introduced. It is defined as follows, see [6].

Definition 3. Let ϕ ∈ Lp(Γε), p ∈ [1,∞]. Then the boundary periodic unfolding operator T b
ε : Lp(Γε) → Lp(Ω ×Γ ) is defined

as

T b
ε (ϕ)(x, y) = ϕ

(
ε

[
x

ε

]
+ εy

)
a.e. for (x, y) ∈ Ω̂ε × Γ, T b

ε (ϕ)(x, y) = 0 a.e. for (x, y) ∈ Ω\Ω̂ε × Γ.

It is well known in periodic homogenization that different scalings with the homogenization parameter lead to different
limit behavior (see e.g. [14], where weak compactness results in the spirit of Theorem 2 are discussed for different scalings).
The canonical scaling of surface terms is ε, that of surface gradients is ε3, which is due to the fact that |Γε| ∼ ε−1 in the
limit. For these scalings, associated with slow diffusion, local (or microscopic) diffusion in the unit cell, i.e. with respect to
the y-variable, is obtained in the homogenization limit [1,13].

The purpose of this contribution is to extend the results to fast diffusion, associated with a scaling of the surface gra-
dients with ε1. It turns out that this leads to global (or macroscopic) diffusion, i.e. with respect to the x-variable, in the
homogenization limit.

In what follows, we formulate the main result in Section 2, present the proof in Section 3 and apply it to homogenize a
prototypical diffusion problem in Section 4.

2. Statement of the main result

The main result is the following weak compactness result for H1-functions defined on a manifold Γε .

Theorem 4. Let ϕε ∈ H1(Γε) be a sequence of functions with

ε‖ϕε‖2
L2(Γε)

+ ε‖∇Γ ϕε‖2
L2(Γε)

� C,
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