Partial differential equations/Numerical analysis

Optimal decay rates for the stabilization of a string network

CrossMark

Taux de décroissance optimaux pour la stabilisation d'un réseau de cordes

Mohamed Jellouli ${ }^{a}$, Michel Mehrenberger ${ }^{\text {b }}$
a Département de mathématiques, Faculté des sciences de Monastir, 5019 Monastir, Tunisia
${ }^{\text {b }}$ Institut de recherche mathématique avancée, Université de Strasbourg, 7, rue René-Descartes, 67084 Strasbourg cedex, France

ARTICLE INFO

Article history:

Received 11 January 2014
Accepted after revision 31 March 2014
Available online 26 April 2014
Presented by Gilles Lebeau

Abstract

We study the decay of the energy for a degenerate network of strings, and obtain optimal decay rates when the lengths are all equal. We also define a classical space semidiscretization and compare the results with the exact method introduced by Ammari and Jellouli (Appl. Math. 52 (4) (2007) 327-343; Bull. Belg. Math. Soc. Simon Stevin 4 (2010) 717-735). © 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

On étudie la décroissance de l'énergie pour un réseau de cordes dégénéré, et on obtient des taux de décroissance optimaux lorsque les longueurs sont égales. On définit aussi un semi-discrétisation classique et on compare les résultats avec ceux de la méthode exacte introduite par Ammari et Jellouli (Appl. Math. 52 (4) (2007) 327-343; Bull. Belg. Math. Soc. Simon Stevin 4 (2010) 717-735).
© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We recall that the dissipation condition $\partial_{x} u(t, 0)=\alpha \partial_{t} u(t, 0)$, at the origin of a vibrating elastic string fixed at its end point, stabilizes this string. More precisely, if $E(t)$ denotes the energy of the solution of the wave equation $\partial_{t}^{2} u(t, x)-$ $\partial_{x}^{2} u(t, x)=0$ on $(0, \ell)$ subject to the initial condition $u(0,)=$.$a and \partial_{t} u(0,)=$.$b , then E(t) \leq C \mathrm{e}^{-\gamma_{\alpha} t}$ where $\gamma_{\alpha}=\frac{1}{\ell} \log \left|\frac{1+\alpha}{1-\alpha}\right|$. Moreover, we remark that if $\alpha=1$, then $E(t)=0, \forall t \geq 2 \ell$. Thus, the value 1 is the best choice of α that makes the system is an equilibrium state. The situation is completely different in the case when we consider a network of strings.

The problem of stabilization of nondegenerate network of strings was studied by K. Ammari, M. Jellouli and M. Khenissi in [5], [1] and [2]. When the strings are coupled at a common end in a star-shaped configuration, it is proven in [1] that the solutions are not exponentially stable in the energy space, in the nondegenerate case. In the particular case of two strings, which is equivalent to the pointwise stabilization of one string, such a problem has been studied in [4]; exponential stabilization is obtained if and only if the lengths satisfy $\frac{\ell_{1}}{\ell_{1}+\ell_{2}}=\frac{p}{q}$, with p and q odd numbers, and the best decay rate, when fixing the total length $\ell_{1}+\ell_{2}$, is obtained when the lengths are equal ($\ell_{1}=\ell_{2}=\ell$), with $\gamma=\frac{\ln (3)}{\ell}$ as the best decay

[^0]rate. Such a problem has been also considered in [7], with different boundary conditions; in the degenerate case, the energy limit was identified and it was proven that the solution decays exponentially toward that limit.

We consider here the case of a degenerate network of vibrating elastic strings when the pointwise feedback acts in the root of the tree (tree-shaped network). Note that in the nondegenerate case, it is proven in [5] that the solutions are not exponentially stable in the energy space. We calculate the limit energy $E_{\infty}:=\lim _{t \rightarrow+\infty} E(t)$ and we show that the decrease from $E(t)$ to E_{∞} is exponential, giving the best decay rate, when the lengths are equal. Finally, we give numerical results in Section 3, which confirm the theoretical results.

2. E_{∞} and best decay rate

Let $N \geq 3$. We consider the initial data $\left(\left(a_{j}\right)_{1 \leq j \leq N},\left(b_{j}\right)_{1 \leq j \leq N}\right) \in \mathcal{H}:=\prod_{j=1}^{N} H^{2}\left(0, \ell_{j}\right) \times \prod_{j=1}^{N} H^{1}\left(0, \ell_{j}\right)$, satisfying the compatibility conditions

$$
\begin{equation*}
a_{1}^{\prime}(0)=\alpha b_{1}(0), \quad a_{1}^{\prime}\left(\ell_{1}\right)=\sum_{j=2}^{N} a_{j}^{\prime}(0) \quad \text { and } \quad a_{j}\left(\ell_{j}\right)=0, \quad a_{1}\left(\ell_{1}\right)=a_{j}(0), j=2, \ldots, N, \tag{1}
\end{equation*}
$$

and the system of partial differential equations

$$
(S): \begin{cases}\partial_{t}^{2} u_{j}(t, x)-\partial_{x}^{2} u_{j}(t, x)=0, & t>0, x \in\left(0, \ell_{j}\right), j=1, \ldots, N, \\ u_{j}(t, 0)=u_{1}\left(t, \ell_{1}\right) \quad \text { and } \quad u_{j}\left(t, \ell_{j}\right)=0, & t \geq 0, j=2, \ldots, N, \\ \partial_{x} u_{1}(t, 0)=\alpha \partial_{t} u_{1}(t, 0), & t \geq 0(\alpha>0), \\ & t \geq 0, \\ \partial_{x} u_{1}\left(t, \ell_{1}\right)=\sum_{j=2}^{N} \partial_{x} u_{j}(t, 0), & x \in\left[0, \ell_{j}\right], j=1, \ldots, N . \\ u_{j}(0, x)=a_{j}(x), \quad \partial_{t} u_{j}(0, x)=b_{j}(x), & \end{cases}
$$

We define the energy of the solution of (S) by

$$
\begin{equation*}
E(t)=\frac{1}{2} \sum_{j=1}^{N}\left\|\partial_{t} u_{j}(t)\right\|_{L^{2}\left(0, \ell_{j}\right)}^{2}+\frac{1}{2} \sum_{j=1}^{N}\left\|\partial_{\chi} u_{j}(t)\right\|_{L^{2}\left(0, \ell_{j}\right)}^{2} \tag{2}
\end{equation*}
$$

and we prove the following theorems in the case where $\ell_{j}=\ell, j=1, \ldots, N$ (we denote by $\left\|\|\right.$ the norm of $L^{2}(0, \ell)$):
Theorem 2.1. If $\left(\left(a_{j}\right)_{1 \leq j \leq N},\left(b_{j}\right)_{1 \leq j \leq N}\right) \in \mathcal{H}$ verify (1), then the energy limit is given by

$$
\begin{equation*}
E_{\infty}=\frac{1}{2(N-1)} \sum_{j=2}^{N} \sum_{k=j+1}^{N}\left(\left\|\left(a_{k}^{\prime}-a_{j}^{\prime}\right)\right\|^{2}+\left\|\left(b_{k}-b_{j}\right)\right\|^{2}\right) \tag{3}
\end{equation*}
$$

Now, we denote by $\alpha_{0}=\frac{2 \sqrt{N-1}}{N}, \Delta=\frac{4\left(\alpha^{2} N^{2}-4 N+4\right)}{(\alpha+1)^{2}}$ and $\lambda=-\frac{\frac{2(N-2)}{\alpha+1}+\sqrt{\Delta}}{2 N} .{ }^{1}$
Theorem 2.2. There is a constant $C=C_{N}(\alpha)>0$ such that for any initial data $\left(\left(a_{j}\right)_{1 \leq j \leq N},\left(b_{j}\right)_{1 \leq j \leq N}\right) \in \mathcal{H}$ satisfying (1) the following inequality holds:

$$
\begin{align*}
& 0 \leq E(t)-E_{\infty} \leq C\left(\left\|a_{1}^{\prime}\right\|^{2}+\left\|b_{1}\right\|^{2}+\left\|\sum_{j=2}^{N} a_{j}^{\prime}\right\|^{2}+\left\|\sum_{j=2}^{N} b_{j}\right\|^{2}\right) \frac{\mathrm{e}^{-\gamma t}}{|\Delta|}, \quad \text { if } \alpha \neq \alpha_{0}, \tag{4}\\
& 0 \leq E(t)-E_{\infty} \leq C\left(\left\|a_{1}^{\prime}\right\|^{2}+\left\|b_{1}\right\|^{2}+\left\|\sum_{j=2}^{N} a_{j}^{\prime}\right\|^{2}+\left\|\sum_{j=2}^{N} b_{j}\right\|^{2}\right) t^{2} \mathrm{e}^{-\gamma_{0} t}, \quad \text { if } \alpha=\alpha_{0}, \tag{5}
\end{align*}
$$

where $\gamma=\frac{1}{\ell} \log \frac{1}{|\lambda|}>0$ and $\gamma_{0}=\frac{1}{\ell} \log \frac{N+2 \sqrt{N-1}}{N-2}$. The best decay rate is achieved in the sense that for all $\alpha>0$, there exists initial data such that (4) and (5) become an equivalence:

$$
E(t)-E_{\infty} \geq C \mathrm{e}^{-\gamma t}, \quad \text { or }, \quad \text { for } \alpha=\alpha_{0}, \quad E(t)-E_{\infty} \geq C t^{2} \mathrm{e}^{-\gamma_{0} t}, \quad \text { with } C>0
$$

and $\forall \alpha \neq \alpha_{0}$, we have $\gamma<\gamma_{0}$.
Remark 1. The case $N=2$ (with ℓ_{1}, ℓ_{2} not necessarily of same size) can be recasted into the case $N=1$ (with $\ell=\ell_{1}+\ell_{2}$).

[^1]
https://daneshyari.com/en/article/4669799

Download Persian Version:

https://daneshyari.com/article/4669799

Daneshyari.com

[^0]: E-mail addresses: mohamed.jellouli@fsm.rnu.tn (M. Jellouli), mehrenbe@math.unistra.fr (M. Mehrenberger).

[^1]: ${ }^{1} \sqrt{\Delta}=i \sqrt{-\Delta}$ if $\Delta<0$. Note that, $\Delta<0$ (resp. $\Delta=0$) if and only if $\left.\alpha \in\right] 0, \alpha_{0}\left[\right.$ (resp. $\alpha=\alpha_{0}$).

