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In this note, we introduce a new methodology for Bayesian inference through the use 
of φ-divergences and of the duality technique. The asymptotic laws of the estimates are 
established.
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r é s u m é

Dans cette Note, nous introduisons une nouvelle méthodologie d’inférence bayésienne en 
utilisant les φ-divergences et la technique de dualité. Nous obtenons les lois asymptotiques 
des estimateurs.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Bayesian techniques are particularly attractive since they can incorporate information other than the data into the model 
in the form of prior distributions. Another feature that makes them increasingly attractive is that they can handle models 
that are difficult to estimate with classical methods by use of simulation techniques, see for instance [24].

The aim of this note is to discuss the use of divergences as a basis for Bayesian inference. The use of divergence measures 
in a Bayesian context has been considered in [10] and [22]. Ragusa [23] used Bayesian φ-divergences in a Generalized 
Empirical Likelihood framework.

The misspecification of prior distributions, the presence of large outliers with respect to the specified model, may lead 
to unreliable posterior distributions for parameters in Bayesian inference. In order to estimate model parameters and cir-
cumvent possible difficulties encountered with the likelihood function, we follow up common robustification ideas, see for 
instance [11,12], and propose to replace the likelihood in the formula of the posterior distribution by the dual form of the 
divergence between a postulated parametric model and the empirical distribution. A major advantage of the method is that 
it does not require additional accessories such as kernel density estimation or other forms of nonparametric smoothing to 
produce nonparametric density estimates of the true underlying density function in contrast with the method proposed by 
Hooker and Vidyashankar [13], which is based on the concept of a minimum disparity procedure introduced by Lindsay 
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[20]. The plug-in of the empirical distribution function is sufficient for the purpose of estimating the divergence in the case 
of i.i.d. data.

The proposed estimators are based on integration rather than on optimization. This is particularly an issue when the 
parameter space is “large”, since the search has to be done over a large-dimensional space. Other reasons, which are com-
monly put forward to use the proposed approach, are their computational attractiveness through the use of Markov chain 
Monte Carlo (MCMC), see [25], and the fact they can easily handle a large number of parameters.

The outline of the note is as follows. Together with a brief review of definitions and properties of divergences, Section 2
discusses the procedure to obtain the estimates. In Section 3, we give the limit laws of the proposed estimators. Some final 
remarks conclude the note.

2. Estimation

2.1. Background on dual divergences inference

Keziou [15] and Broniatowski and Keziou [5] introduced the class of dual divergences estimators for general parametric 
models. In the following, we shortly recall their context and definition.

Recall that the φ-divergence between a bounded signed measure Q and a probability measure (p.m.) P on D , when Q
is absolutely continuous with respect to P , is defined by

Dφ(Q , P ) :=
∫
D

φ

(
dQ

dP
(x)

)
dP (x),

where φ is a convex function from ]−∞, ∞[ to [0, ∞] with φ(1) = 0.
Different choices for φ have been proposed in the literature. For a good overview, see [21]. A well-known class of 

divergences is the class of the so-called “power divergences” introduced by Cressie and Read [9] (see also [18], Chapter 2); 
it contains the most known and used divergences. They are defined through the class of convex functions

x ∈ ]0,+∞[ �→ φγ (x) := xγ − γ x + γ − 1

γ (γ − 1)
(1)

if γ ∈R \ {0, 1}, φ0(x) := − log x + x − 1 and φ1(x) := x log x − x + 1.
Let X1, . . . , Xn be an i.i.d. sample and Pθ0 the true p.m. underlying the data. Consider the problem of estimating the 

population parameters of interest θ0, when the underlying identifiable model is given by {Pθ : θ ∈ Θ} with Θ a subset 
of Rd . Here the attention is restricted to the case where the probability measures Pθ are absolutely continuous with respect 
to the same σ -finite measure λ; the correspondent densities are denoted pθ .

Let φ be a function of class C2, strictly convex satisfying∫ ∣∣∣∣φ′
(

pθ (x)

pα(x)

)∣∣∣∣pθ (x)dx < ∞. (2)

By Lemma 3.2 in [4], if the function φ satisfies the following condition: there exists 0 < η < 1 such that for all c in 
[1 − η, 1 + η], we can find numbers c1, c2, c3 such that

φ(cx) ≤ c1φ(x) + c2|x| + c3, for all real x, (3)

then the assumption (2) is satisfied whenever Dφ(Pθ , Pα) is finite. From now on, U will be the set of θ and α such that 
Dφ(Pθ , Pα) < ∞. Note that all the real convex functions φγ pertaining to the class of power divergences defined in (1)
satisfy condition (3).

Under (2), using Fenchel’s duality technique, the divergence Dφ(Pθ , Pθ0 ) can be represented as resulting from an opti-
mization procedure; this elegant result was proven in [15,19] and [5]. Broniatowski and Keziou [4] called it the dual form 
of a divergence, due to its connection with convex analysis.

Under the above conditions, the φ-divergence:

Dφ(Pθ ,Pθ0) =
∫

φ

(
pθ (x)

pθ0(x)

)
pθ0(x)dx,

can be represented as the following form:

Dφ(Pθ ,Pθ0) = sup
α∈U

∫
h(θ,α)dPθ0 , (4)

where h(θ, α) : x �→ h(θ, α, x), ∀x ∈R and

h(θ,α, x) :=
∫

φ′
(

pθ

pα

)
pθ −

[
pθ (x)

pα(x)
φ′

(
pθ (x)

pα(x)

)
− φ

(
pθ (x)

pα(x)

)]
. (5)
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