Mathematical Problems in Mechanics

# Expression of Dirichlet boundary conditions in terms of the strain tensor in linearized elasticity 

# Expression de conditions aux limites de Dirichlet en fonction du tenseur linéarisé des déformations 

Philippe Ciarlet ${ }^{\mathrm{a}}$, Cristinel Mardare ${ }^{\mathrm{b}}$<br>${ }^{\text {a }}$ Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong<br>${ }^{\text {b }}$ Université Pierre-et-Marie-Curie, Laboratoire Jacques-Louis-Lions, 4, place Jussieu, 75005 Paris, France

## A R T I CLE IN F O

## Article history:

Received and accepted 18 April 2013
Available online 20 May 2013
Presented by Philippe G. Ciarlet


#### Abstract

In a previous work, it was shown how the linearized strain tensor field $\mathbf{e}:=\frac{1}{2}\left(\nabla \boldsymbol{u}^{T}+\nabla \boldsymbol{u}\right) \in$ $\mathbb{L}^{2}(\Omega)$ can be considered as the sole unknown in the Neumann problem of linearized elasticity posed over a domain $\Omega \subset \mathbb{R}^{3}$, instead of the displacement vector field $\boldsymbol{u} \in \boldsymbol{H}^{1}(\Omega)$ in the usual approach. The purpose of this Note is to show that the same approach applies as well to the Dirichlet-Neumann problem. To this end, we show how the boundary condition $\boldsymbol{u}=\mathbf{0}$ on a portion $\Gamma_{0}$ of the boundary of $\Omega$ can be recast, again as boundary conditions on $\Gamma_{0}$, but this time expressed only in terms of the new unknown $\mathbf{e} \in \mathbb{L}^{2}(\Omega)$. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É Dans un travail antérieur, on a montré comment le champ e:= $\frac{1}{2}\left(\nabla \boldsymbol{u}^{T}+\nabla \boldsymbol{u}\right) \in \mathbb{L}^{2}(\Omega)$ des tenseurs linéarisés des déformations peut être considéré comme la seule inconnue dans le problème de Neumann pour l'élasticité linéarisée posé sur un domaine $\Omega \subset \mathbb{R}^{3}$, au lieu du champ $\boldsymbol{u} \in \boldsymbol{H}^{1}(\Omega)$ des déplacements dans l'approche habituelle. L'objet de cette Note est de montrer que la même approche s'applique aussi bien au problème de DirichletNeumann. A cette fin, nous montrons comment la condition aux limites $\boldsymbol{u}=\mathbf{0}$ sur une portion $\Gamma_{0}$ de la frontière de $\Omega$ peut être ré-écrite, à nouveau sous forme de conditions aux limites sur $\Gamma_{0}$, mais exprimées cette fois uniquement en fonction de la nouvelle inconnue $\mathbf{e} \in \mathbb{L}^{2}(\Omega)$.


© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## 1. Preliminaries

Greek indices, resp. Latin indices, range over the set $\{1,2\}$, resp. $\{1,2,3\}$. The summation convention with respect to repeated indices is used in conjunction with these rules. The notations $|\mathbf{a}|, \mathbf{a} \wedge \boldsymbol{b}, \mathbf{a} \otimes \boldsymbol{b}$, and $\mathbf{a} \cdot \boldsymbol{b}$ respectively denote the Euclidean norm, the exterior product, the dyadic product, and the inner product of vectors $\mathbf{a}, \boldsymbol{b} \in \mathbb{R}^{3}$.

The notation $\mathbb{S}^{m}$, resp. $\mathbb{A}^{m}$, designates the space of all symmetric, resp. antisymmetric, tensors of order $m$. The inner product of two $m \times m$ tensors $\mathbf{e}$ and $\boldsymbol{\tau}$ is denoted and defined by $\mathbf{e}: \boldsymbol{\tau}=\operatorname{tr}\left(\mathbf{e}^{T} \boldsymbol{\tau}\right)$. Given a normed vector space $X$, the notation $\mathcal{L}_{\text {sym }}^{2}(X \times X)$ designates the space of all continuous symmetric bilinear forms defined on the product $X \times X$.

[^0]Let $\Omega \subset \mathbb{R}^{3}$ be a connected, bounded, open set whose boundary $\partial \Omega$ is of class $\mathcal{C}^{4}$. This means that there exist a finite number $N$ of open sets $\omega^{k} \subset \mathbb{R}^{2}$ and of mappings $\boldsymbol{\theta}^{k} \in \mathcal{C}^{4}\left(\omega^{k} ; \mathbb{R}^{3}\right), k=1,2, \ldots, N$, such that $\partial \Omega=\bigcup_{k=1}^{N} \boldsymbol{\theta}^{k}\left(\omega^{k}\right)$. It also implies that there exists $\varepsilon>0$ such that the mappings $\boldsymbol{\Theta}^{k} \in \mathcal{C}^{3}\left(U^{k} ; \mathbb{R}^{3}\right)$, defined by:

$$
\boldsymbol{\Theta}^{k}\left(y, y_{3}\right):=\boldsymbol{\theta}^{k}(y)+y_{3} \mathbf{a}_{3}^{k}(y) \text { for all }\left(y, y_{3}\right) \in U^{k}:=\omega^{k} \times(-\varepsilon, \varepsilon)
$$

where $\mathbf{a}_{3}^{k}$ denotes the unit inner normal vector field along the portion $\boldsymbol{\theta}^{k}\left(\omega^{k}\right)$ of the boundary of $\Omega$, are $\mathcal{C}^{3}$-diffeomorphisms onto their image (cf. [2, Theorem 4.1-1]). Thus the mappings $\left\{\boldsymbol{\Theta}^{k} ; 1 \leqslant k \leqslant N\right\}$ form an atlas of local charts for the open set $\Omega_{\varepsilon}:=\{x \in \Omega ; \operatorname{dist}(x, \partial \Omega)<\varepsilon\} \subset \mathbb{R}^{3}$, while the mappings $\left\{\theta^{k} ; 1 \leqslant k \leqslant N\right\}$ form an atlas of local charts for the surface $\Gamma=\partial \Omega \subset \mathbb{R}^{3}$. When no confusion should arise, we will drop the explicit dependence on $k$ for notational brevity.

A generic point in $\omega$ is denoted $y=\left(y_{\alpha}\right)$ and a generic point in $U=\omega \times(-\varepsilon, \varepsilon)$ is denoted $\left(y_{1} y_{3}\right)$. Partial derivatives with respect to $y_{i}$ are denoted $\partial_{i}$. The vectors $\mathbf{a}_{\alpha}(y):=\partial_{\alpha} \boldsymbol{\theta}(y)$ form a basis in the tangent space at $\boldsymbol{\theta}(y)$ to the surface $\Gamma:=\partial \Omega \subset \mathbb{R}^{3}$ and the vectors $\boldsymbol{g}_{i}\left(y, y_{3}\right):=\partial_{i} \boldsymbol{\Theta}\left(y, y_{3}\right)$ form a basis in the tangent space at $\boldsymbol{\Theta}\left(y, y_{3}\right)$ to the open set $\boldsymbol{\Theta}(U) \subset \Omega_{\varepsilon} \subset \mathbb{R}^{3}$. Note that:

$$
\boldsymbol{g}_{\alpha}\left(y, y_{3}\right)=\mathbf{a}_{\alpha}(y)+y_{3} \partial_{\alpha} \mathbf{a}_{3}(y) \quad \text { and } \quad \boldsymbol{g}_{3}\left(y, y_{3}\right)=\mathbf{a}_{3}(y)
$$

By exchanging if necessary the coordinates $y_{1}$ and $y_{2}$, we may always assume that:

$$
\mathbf{a}_{3}(y)=\frac{\mathbf{a}_{1}(y) \wedge \mathbf{a}_{2}(y)}{\left|\mathbf{a}_{1}(y) \wedge \mathbf{a}_{2}(y)\right|}
$$

The vectors $\mathbf{a}^{\alpha}(y)$ in the tangent space at $\boldsymbol{\theta}(y)$ to $\Gamma$ and $\boldsymbol{g}^{i}\left(y, y_{3}\right)$ in the tangent space at $\boldsymbol{\Theta}\left(y, y_{3}\right)$ are defined by:

$$
\mathbf{a}^{\alpha}(y) \cdot \mathbf{a}_{\beta}(y)=\delta_{\beta}^{\alpha} \quad \text { and } \quad \boldsymbol{g}^{i}\left(y, y_{3}\right) \cdot \boldsymbol{g}_{j}\left(y, y_{3}\right)=\delta_{j}^{i}
$$

the area element on $\Gamma$ is $\mathrm{d} \Gamma:=\sqrt{a} d y$, where $a:=\left|\mathbf{a}_{1} \wedge \mathbf{a}_{2}\right|$, and the Christoffel symbols $C_{\alpha \beta}^{\sigma}$ and $\Gamma_{i j}^{k}$, respectively induced by the immersions $\boldsymbol{\theta}$ and $\boldsymbol{\Theta}$, are defined by:

$$
C_{\alpha \beta}^{\sigma}:=\partial_{\alpha \beta} \boldsymbol{\theta} \cdot \mathbf{a}^{\sigma} \quad \text { and } \quad \Gamma_{i j}^{k}:=\partial_{i j} \boldsymbol{\Theta} \cdot \mathbf{g}^{k}
$$

A point in $\Omega$ will be specified either by its Cartesian coordinates $x=\left(x_{i}\right)$ with respect to a given orthonormal basis $\hat{\mathbf{e}}^{i}$ in $\mathbb{R}^{3}$, or, when $x \in \Omega_{\varepsilon} \subset \Omega$, by its curvilinear coordinates $\left(y, y_{3}\right)$ corresponding to a local chart $\boldsymbol{\Theta}$; thus $x=\boldsymbol{\Theta}\left(y, y_{3}\right)$ in such a local chart.

Vector fields, resp. tensor fields, on $\Omega$ will be expanded at each $x=\boldsymbol{\Theta}\left(y, y_{3}\right) \in \Omega_{\varepsilon}$ over the contravariant bases $\boldsymbol{g}^{i}\left(y, y_{3}\right)$, resp. $\left(\boldsymbol{g}^{i} \otimes \boldsymbol{g}^{j}\right)\left(y, y_{3}\right)$. Covariant derivatives with respect to the local chart $\boldsymbol{\Theta}$ are defined as usual, and denoted $u_{i \| j}, u_{i \| j k}$, $e_{i j \| k}$, etc.

Let $\Gamma_{0}$ be a connected and relatively open subset of the boundary $\Gamma$ of $\Omega$. Since $\Gamma$ is a manifold of class $\mathcal{C}^{4}$, so is $\Gamma_{0}$. It follows that functions, vector fields, and tensor fields, of class $\mathcal{C}^{m}, m=0,1,2$, can be defined on $\Gamma_{0}$. The Lebesgue and Sobolev spaces on $\Gamma_{0}$ and their norms are then defined as in, e.g., Aubin [1].

We also let $\mathcal{C}_{c}^{m}\left(\Gamma_{0}\right)$ denote the space of all functions $f: \Gamma_{0} \rightarrow \mathbb{R}$ of class $\mathcal{C}^{m}$ with compact support contained in $\Gamma_{0}$. Then the Sobolev space $H_{0}^{m}\left(\Gamma_{0}\right)$ is defined as the completion of the space $\mathcal{C}_{c}^{m}\left(\Gamma_{0}\right)$ with respect to the norm $\|\cdot\|_{H^{m}\left(\Gamma_{0}\right)}$. Its dual space is denoted $H^{-m}\left(\Gamma_{0}\right)$.

Spaces of vector fields, resp. symmetric tensor fields, with values in $\mathbb{R}^{3}$, resp. in $\mathbb{S}^{3}$, are defined by using a given Cartesian basis $\left\{\hat{\mathbf{e}}_{i}, 1 \leqslant i \leqslant 3\right\}$ in $\mathbb{R}^{3}$, resp. the basis $\left\{\frac{1}{2}\left(\hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j}+\hat{\mathbf{e}}_{j} \otimes \hat{\mathbf{e}}_{i}\right), 1 \leqslant i, j \leqslant 3\right\}$ in $\mathbb{S}^{3}$. They will be denoted by bold letters and by capital Roman letters, respectively.

Complete proofs and complements will be found in [5].

## 2. Linearized change of metric and curvature tensors on $\partial \Omega$ associated with a linearized strain tensor in $\mathbb{C}^{\mathbf{1}}(\bar{\Omega})$

Given any displacement field $\boldsymbol{u} \in \mathcal{C}^{2}(\bar{\Omega})$, the restriction $\zeta:=\left.\boldsymbol{u}\right|_{\bar{\Gamma}_{0}} \in \mathcal{C}^{2}\left(\bar{\Gamma}_{0}\right)$ is a displacement field of the surface $\bar{\Gamma}_{0} \subset \mathbb{R}^{3}$. The linearized change of metric and change of curvature tensor fields induced by $\zeta$ are then respectively defined in each local chart by:

$$
\begin{array}{ll}
\boldsymbol{\gamma}(\zeta)=\gamma_{\alpha \beta}(\zeta) \mathbf{a}^{\alpha} \otimes \mathbf{a}^{\beta}, \quad \text { where } \gamma_{\alpha \beta}(\zeta):=\frac{1}{2}\left(\partial_{\alpha} \zeta \cdot \mathbf{a}_{\beta}+\partial_{\beta} \zeta \cdot \mathbf{a}_{\alpha}\right) \\
\boldsymbol{\rho}(\zeta)=\rho_{\alpha \beta}(\zeta) \mathbf{a}^{\alpha} \otimes \mathbf{a}^{\beta}, \quad \text { where } \rho_{\alpha \beta}(\zeta):=\left(\partial_{\alpha \beta} \zeta-C_{\alpha \beta}^{\sigma} \partial_{\sigma} \zeta\right) \cdot \mathbf{a}_{3} \tag{1}
\end{array}
$$

where for convenience the same notation $\zeta$ denotes either the vector field $\zeta: \bar{\Gamma}_{0} \rightarrow \mathbb{R}^{3}$ or the vector field $\zeta:=\zeta \circ \boldsymbol{\theta}: \omega \rightarrow \mathbb{R}^{3}$ in a local chart $\boldsymbol{\theta}: \omega \rightarrow \bar{\Gamma}_{0}$ of $\bar{\Gamma}_{0}$.

Let $T_{\chi} \Gamma_{0} \subset \mathbb{R}^{3}$ denote the tangent space at each point $x$ of the surface $\Gamma_{0}$. Given any matrix field $\mathbf{e} \in \mathbb{C}^{1}(\bar{\Omega})$, let the tensor fields:

# https://daneshyari.com/en/article/4670022 

Download Persian Version:

## https://daneshyari.com/article/4670022

## Daneshyari.com


[^0]:    E-mail addresses: mapgc@cityu.edu.hk (P. Ciarlet), mardare@ann.jussieu.fr (C. Mardare).
    1631-073X/\$ - see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
    http://dx.doi.org/10.1016/j.crma.2013.04.015

