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In a previous work, it was shown how the linearized strain tensor field e := 1
2 (∇uT +∇u) ∈

L
2(Ω) can be considered as the sole unknown in the Neumann problem of linearized

elasticity posed over a domain Ω ⊂R
3, instead of the displacement vector field u ∈ H 1(Ω)

in the usual approach. The purpose of this Note is to show that the same approach applies
as well to the Dirichlet–Neumann problem. To this end, we show how the boundary
condition u = 0 on a portion Γ0 of the boundary of Ω can be recast, again as boundary
conditions on Γ0, but this time expressed only in terms of the new unknown e ∈ L

2(Ω).
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans un travail antérieur, on a montré comment le champ e := 1
2 (∇uT + ∇u) ∈ L

2(Ω) des
tenseurs linéarisés des déformations peut être considéré comme la seule inconnue dans
le problème de Neumann pour l’élasticité linéarisée posé sur un domaine Ω ⊂ R

3, au lieu
du champ u ∈ H 1(Ω) des déplacements dans l’approche habituelle. L’objet de cette Note
est de montrer que la même approche s’applique aussi bien au problème de Dirichlet–
Neumann. À cette fin, nous montrons comment la condition aux limites u = 0 sur une
portion Γ0 de la frontière de Ω peut être ré-écrite, à nouveau sous forme de conditions aux
limites sur Γ0, mais exprimées cette fois uniquement en fonction de la nouvelle inconnue
e ∈ L

2(Ω).
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Preliminaries

Greek indices, resp. Latin indices, range over the set {1,2}, resp. {1,2,3}. The summation convention with respect to
repeated indices is used in conjunction with these rules. The notations |a|, a ∧ b, a ⊗ b, and a · b respectively denote the
Euclidean norm, the exterior product, the dyadic product, and the inner product of vectors a, b ∈R

3.
The notation S

m , resp. Am , designates the space of all symmetric, resp. antisymmetric, tensors of order m. The inner
product of two m × m tensors e and τ is denoted and defined by e : τ = tr(eT τ ). Given a normed vector space X , the
notation L2

sym(X × X) designates the space of all continuous symmetric bilinear forms defined on the product X × X .
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Let Ω ⊂ R
3 be a connected, bounded, open set whose boundary ∂Ω is of class C4. This means that there exist a finite

number N of open sets ωk ⊂ R
2 and of mappings θk ∈ C4(ωk;R3), k = 1,2, . . . , N , such that ∂Ω = ⋃N

k=1 θk(ωk). It also
implies that there exists ε > 0 such that the mappings Θk ∈ C3(U k;R3), defined by:

Θk(y, y3) := θk(y) + y3ak
3(y) for all (y, y3) ∈ Uk := ωk × (−ε, ε),

where ak
3 denotes the unit inner normal vector field along the portion θk(ωk) of the boundary of Ω , are C3-diffeomorphisms

onto their image (cf. [2, Theorem 4.1-1]). Thus the mappings {Θk; 1 � k � N} form an atlas of local charts for the open
set Ωε := {x ∈ Ω;dist(x, ∂Ω) < ε} ⊂ R

3, while the mappings {θk;1 � k � N} form an atlas of local charts for the surface
Γ = ∂Ω ⊂ R

3. When no confusion should arise, we will drop the explicit dependence on k for notational brevity.
A generic point in ω is denoted y = (yα) and a generic point in U = ω × (−ε, ε) is denoted (y, y3). Partial derivatives

with respect to yi are denoted ∂i . The vectors aα(y) := ∂αθ(y) form a basis in the tangent space at θ(y) to the surface
Γ := ∂Ω ⊂ R

3 and the vectors g i(y, y3) := ∂iΘ(y, y3) form a basis in the tangent space at Θ(y, y3) to the open set
Θ(U ) ⊂ Ωε ⊂ R

3. Note that:

gα(y, y3) = aα(y) + y3∂αa3(y) and g3(y, y3) = a3(y).

By exchanging if necessary the coordinates y1 and y2, we may always assume that:

a3(y) = a1(y) ∧ a2(y)

|a1(y) ∧ a2(y)| .

The vectors aα(y) in the tangent space at θ(y) to Γ and g i(y, y3) in the tangent space at Θ(y, y3) are defined by:

aα(y) · aβ(y) = δα
β and g i(y, y3) · g j(y, y3) = δi

j,

the area element on Γ is dΓ := √
ady, where a := |a1 ∧ a2|, and the Christoffel symbols Cσ

αβ and Γ k
i j , respectively induced

by the immersions θ and Θ , are defined by:

Cσ
αβ := ∂αβθ · aσ and Γ k

i j := ∂i jΘ · gk.

A point in Ω will be specified either by its Cartesian coordinates x = (xi) with respect to a given orthonormal basis êi

in R
3, or, when x ∈ Ωε ⊂ Ω , by its curvilinear coordinates (y, y3) corresponding to a local chart Θ ; thus x = Θ(y, y3) in

such a local chart.
Vector fields, resp. tensor fields, on Ω will be expanded at each x = Θ(y, y3) ∈ Ωε over the contravariant bases g i(y, y3),

resp. (g i ⊗ g j)(y, y3). Covariant derivatives with respect to the local chart Θ are defined as usual, and denoted ui‖ j , ui‖ jk ,
ei j‖k , etc.

Let Γ0 be a connected and relatively open subset of the boundary Γ of Ω . Since Γ is a manifold of class C4, so is Γ0.
It follows that functions, vector fields, and tensor fields, of class Cm , m = 0,1,2, can be defined on Γ0. The Lebesgue and
Sobolev spaces on Γ0 and their norms are then defined as in, e.g., Aubin [1].

We also let Cm
c (Γ0) denote the space of all functions f :Γ0 → R of class Cm with compact support contained in Γ0. Then

the Sobolev space Hm
0 (Γ0) is defined as the completion of the space Cm

c (Γ0) with respect to the norm ‖ · ‖Hm(Γ0) . Its dual
space is denoted H−m(Γ0).

Spaces of vector fields, resp. symmetric tensor fields, with values in R
3, resp. in S

3, are defined by using a given Cartesian
basis {êi,1 � i � 3} in R

3, resp. the basis { 1
2 (êi ⊗ ê j + ê j ⊗ êi),1 � i, j � 3} in S

3. They will be denoted by bold letters and
by capital Roman letters, respectively.

Complete proofs and complements will be found in [5].

2. Linearized change of metric and curvature tensors on ∂Ω associated with a linearized strain tensor in C
1(Ω)

Given any displacement field u ∈ C2(Ω), the restriction ζ := u|Γ 0
∈ C2(Γ 0) is a displacement field of the surface

Γ 0 ⊂ R
3. The linearized change of metric and change of curvature tensor fields induced by ζ are then respectively de-

fined in each local chart by:

γ (ζ ) = γαβ(ζ )aα ⊗ aβ, where γαβ(ζ ) := 1

2
(∂αζ · aβ + ∂βζ · aα),

ρ(ζ ) = ραβ(ζ )aα ⊗ aβ, where ραβ(ζ ) := (
∂αβζ − Cσ

αβ∂σ ζ
) · a3, (1)

where for convenience the same notation ζ denotes either the vector field ζ :Γ 0 → R
3 or the vector field ζ := ζ ◦θ :ω →R

3

in a local chart θ :ω → Γ 0 of Γ 0.
Let TxΓ0 ⊂ R

3 denote the tangent space at each point x of the surface Γ0. Given any matrix field e ∈ C
1(Ω), let the

tensor fields:



Download	English	Version:

https://daneshyari.com/en/article/4670022

Download	Persian	Version:

https://daneshyari.com/article/4670022

Daneshyari.com

https://daneshyari.com/en/article/4670022
https://daneshyari.com/article/4670022
https://daneshyari.com/

