

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical analysis/Harmonic analysis

Transmutation operators associated with an integro-differential operator on the real line and certain of their applications

Opérateurs de transmutation associés à un opérateur intégro-différentiel sur la droite réelle et certaines de leurs applications

Mohamed Ali Mourou

Department of Mathematics, College of Sciences for Girls, University of Dammam, P.O. Box 1982, Dammam 31441, Saudi Arabia

ARTICLE INFO

Article history: Received 23 August 2013 Accepted after revision 24 April 2014 Available online 5 June 2014

Presented by Jean-Michel Bony

ABSTRACT

We consider a singular integro-differential operator Λ on the real line. We build transmutation operators of Λ and its dual $\widetilde{\Lambda}$ into the first derivative operator d/dx. Using these transmutation operators, we develop a new commutative harmonic analysis on the real line corresponding to the operator Λ .

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous considérons un opérateur integro-différentiel singulier Λ sur la droite réelle. Nous construisons une paire de transformations intégrales qui transmutent Λ et son dual $\widetilde{\Lambda}$ en l'opérateur d/dx. En utilisant les propriétés de ces opérateurs de transmutation, on définit une nouvelle analyse harmonique sur \mathbb{R} correspondant à l'opérateur Λ .

 $\ensuremath{\mathbb{C}}$ 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Notations

We denote by $\mathcal{E}(\mathbb{R})$ the space of C^{∞} functions on \mathbb{R} , provided with the topology of compact convergence for all derivatives. Recall that each function f in $\mathcal{E}(\mathbb{R})$ may be decomposed uniquely into the sum $f = f_e + f_o$, where the even part f_e is defined by $f_e(x) = (f(x) + f(-x))/2$ and the odd part f_o by $f_o(x) = (f(x) - f(-x))/2$. $\mathcal{E}_e(\mathbb{R})$ (resp. $\mathcal{E}_o(\mathbb{R})$) stands for the subspace of $\mathcal{E}(\mathbb{R})$ consisting of even (resp. odd) functions. For a > 0, $\mathcal{D}_a(\mathbb{R})$ designates the space of C^{∞} functions on \mathbb{R} supported in [-a, a], equipped with the topology induced by $\mathcal{E}(\mathbb{R})$. Put $\mathcal{D}(\mathbb{R}) = \bigcup_{a>0} \mathcal{D}_a(\mathbb{R})$ endowed with the inductive limit topology. $\mathcal{D}_e(\mathbb{R})$ (resp. $\mathcal{D}_o(\mathbb{R})$) denotes the subspace of $\mathcal{D}(\mathbb{R})$ consisting of even (resp. odd) functions. For a > 0, let \mathbf{H}_a be the space of entire, rapidly decreasing functions of exponential type a. Put $\mathbf{H} = \bigcup_{a>0} \mathbf{H}_a$, endowed with the inductive limit topology. Let \mathcal{I} (resp. \mathcal{J}) denotes the map defined on $\mathcal{E}_e(\mathbb{R})$ (resp. $\mathcal{D}_o(\mathbb{R})$) by $\mathcal{J}h(x) = \frac{1}{A(x)} \int_0^x h(t)A(t)dt$ (resp. $\mathcal{J}h(x) = \int_{-\infty}^x h(t)dt$).

http://dx.doi.org/10.1016/j.crma.2014.04.010

1631-073X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

2. Transmutation operators

In [4] we have considered the first-order singular differential-difference operator

$$\Lambda_0 f(x) = \frac{\mathrm{d}f}{\mathrm{d}x} + \frac{A'(x)}{A(x)} \bigg(\frac{f(x) - f(-x)}{2} \bigg),$$

where

$$A(x) = |x|^{2\alpha + 1} B(x), \quad \alpha > -1/2,$$

B being a positive C^{∞} even function on \mathbb{R} . We have exploited a pair of transmutation operators between Λ_0 and the first derivative operator d/dx, to initiate a quite new harmonic analysis on the real line tied to Λ_0 , in which several analytic structures on \mathbb{R} were generalized. The key role in our investigation was played by the second-order differential operator

$$\Delta_0 f(x) = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} + \frac{A'(x)}{A(x)} \frac{\mathrm{d}f}{\mathrm{d}x},$$

which is linked to Λ_0 via the relationship

$$\Lambda_0^2 f = \Delta_0 f$$
, for all $f \in \mathcal{E}_e(\mathbb{R})$.

Put

$$\Delta = \Delta_0 + q,$$

where *q* is a real-valued C^{∞} even function on \mathbb{R} . The motivation of the present paper was to look for an integro-differential operator of the form

$$\Lambda = \Lambda_0 + M(x) \int_{-x}^{x} f(t)N(t)dt$$

(M and N being two even functions) such that

$$\Lambda^2 f = \Delta f$$
, for all $f \in \mathcal{E}_{e}(\mathbb{R})$.

A straightforward calculation shows that (1) is equivalent to

$$(2MN - q)f + \frac{2}{A}(AM)' \int_{0}^{x} fNdt = 0,$$

for all $f \in \mathcal{E}_{e}(\mathbb{R})$. The easiest choice was

$$AM = 1$$
 and $2MN - q = 0$

that is,

$$\Lambda = \Lambda_0 + \frac{1}{A(x)} \int_0^x \left(\frac{f(t) + f(-t)}{2}\right) q(t) A(t) \mathrm{d}t.$$

The objective of this work is to establish for Λ results similar to those obtained for Λ_0 in [4]. This objective is achieved by using the crucial identity (1) and some basic facts about the differential operator Δ . Recall that Lions [2] has constructed an automorphism \mathfrak{X} of $\mathcal{E}_{e}(\mathbb{R})$ satisfying

$$\mathfrak{X}\frac{\mathrm{d}^2}{\mathrm{d}x^2}f = \Delta\mathfrak{X}f \text{ and } \mathfrak{X}f(0) = f(0) \text{ for all } f \in \mathcal{E}_{\mathrm{e}}(\mathbb{R}).$$

The construction of the Lions operator \mathcal{X} was aimed at allowing the resolution of certain mixed value problems. Later, Trimèche [5] has obtained for the Lions operator \mathcal{X} the following integral representation:

$$\mathcal{X}f(x) = \int_{0}^{|x|} \mathcal{K}(x, y) f(y) dy, \quad x \neq 0, \ f \in \mathcal{E}_{e}(\mathbb{R}),$$
(2)

(1)

Download English Version:

https://daneshyari.com/en/article/4670078

Download Persian Version:

https://daneshyari.com/article/4670078

Daneshyari.com