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We propose an analysis for the stabilized finite element methods proposed in Burman 
(2013) [2] valid in the case of ill-posed problems for which only weak continuous 
dependence can be assumed. A priori and a posteriori error estimates are obtained without 
assuming coercivity or inf–sup stability of the continuous problem.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette note, nous proposons une nouvelle analyse pour les méthodes d’éléments finis 
stabilisées introduites dans Burman (2013) [2], appliquées a des problèmes mal posés avec 
des propriétés de dépendance continue faibles. Nous obtenons des estimations a priori 
et a posteriori sans supposer ni coercitivité ni stabilité inf–sup de la forme bilinéaire du 
problème continu.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We are interested in the numerical approximation of ill-posed problems. The abstract theory will be illustrated by the 
following linear elliptic Cauchy problem. Let Ω be a convex polygonal (polyhedral) domain in Rd , d = 2, 3, and consider the 
equation

{ −�u = f , in Ω

u = 0 and ∇u · n = ψ on Γ
(1)

where Γ ⊂ ∂Ω denotes a simply connected part of the boundary and f ∈ L2(Ω), ψ ∈ H
1
2 (Γ ). Introducing the spaces 

V := {v ∈ H1(Ω) : v|Γ = 0} and W := {v ∈ H1(Ω) : v|Γ ′ = 0}, where Γ ′ := ∂Ω \ Γ and the forms a(u, w) := ∫
Ω

∇u · ∇w dx, 
and l(w) := ∫

Ω
f w dx + ∫

Γ
ψ w ds Eq. (1) may be cast in the abstract weak formulation, find u ∈ V such that
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a(u, w) = l(w) ∀w ∈ W . (2)

It is well known that the Cauchy problem (1) is not well-posed in the sense of Hadamard. If l(w) is such that a sufficiently 
smooth, exact solution exists, conditional continuous dependence estimates can nevertheless be obtained [1].

The objective of the present paper is to study numerical methods for ill-posed problems of the form (2), where a :
V × W �→ R and l : W �→ R are a bilinear and a linear form. Assume that the linear form l(w) is such that the problem (2)
admits a unique solution u ∈ V . Define the following dual norm on l, ‖l‖W ′ := sup w∈W‖w‖W =1

|l(w)|. Observe that we do not 

assume that (2) admits a unique solution for all l(w) such that ‖l‖W ′ < ∞. The stability property we assume to be satisfied by 
(2) is the following continuous dependence.

Assumption: continuous dependence on data. Consider the functional j : V �→R. Let Ξ : R+ �→ R
+ be a continuous, mono-

tone increasing function with limx→0+ Ξ(x) = 0. Let ε > 0.

Assume that there holds ‖l‖W ′ ≤ ε in (2) then, for ε sufficiently small,
∣∣ j(u)

∣∣ ≤ Ξ(ε). (3)

For the example of the Cauchy problem (1), it is known [1, Theorems 1.7 and 1.9] that if (1) admits a unique solution 
u ∈ H1(Ω), a continuous dependence of the form (3), with 0 < ε < 1, holds for

j(u) := ‖u‖L2(ω),ω ⊂ Ω : dist(ω, ∂Ω) =: dω,∂Ω > 0 with Ξ(x) := Cuς xς , Cuς > 0, ς := ς(dω,∂Ω) ∈ (0,1) (4)

and for

j(u) := ‖u‖L2(Ω) with Ξ(x) := Cu
(∣∣log(x)

∣∣ + C
)−ς

with Cu, C > 0, ς ∈ (0,1). (5)

Note that to derive these results, l(·) is first associated with its Riesz representant in W (cf. [1, Eq. (1.31)] and discussion). 
The constant Cuς in (4) grows monotonically in ‖u‖L2(Ω) and Cu in (5) grows monotonically in ‖u‖H1(Ω) .

2. Finite element discretization

Let Kh be a shape regular, conforming, subdivision of Ω into non-overlapping triangles κ . The family of meshes {Kh}h
is indexed by the mesh parameter h := max(diam(κ)). Let FI be the set of interior faces in Kh and FΓ , FΓ ′ the set of 
element faces of Kh whose interior intersects Γ and Γ ′ respectively. We assume that the mesh matches the boundary of Γ
so that FΓ ∩FΓ ′ = ∅. Let X1

h denote the standard finite element space of continuous, affine functions. Define Vh := V ∩ X1
h

and Wh := W ∩ X1
h . We may then write the finite element method: find (uh, zh) ∈ Vh × Wh such that,

a(uh, wh) − sW (zh, wh) = l(wh)

a(vh, zh) + sV (uh, vh) = sV (u, vh)

}
for all (vh, wh) ∈ Vh × Wh. (6)

A possible choice of stabilization operators for the problem (1) are

sV (uh, vh) :=
∑

F∈FI ∪FΓ

∫
F

hF [∂nuh][∂n vh]ds, with hF := diam(F ) (7)

and

sW (zh, wh) := a(zh, wh) or sW (zh, wh) :=
∑

F∈FI ∪FΓ ′

∫
F

hF [∂nzh][∂n wh]ds (8)

where [∂nuh] denotes the jump of ∇uh · nF for F ∈ FI and when F ∈ FΓ or F ∈ FΓ ′ define [∂nuh]|F := ∇uh · n∂Ω . Unique 
existence of (uh, zh) solution to (6)–(8) follows using the arguments of [2, Proposition 3.3]. By inspection we have that the 
system (6) is consistent with (2) for zh = 0. Taking the difference of (6) and the relation (2), with w = wh , we obtain the 
Galerkin orthogonality,

a(uh − u, wh) − sW (zh, wh) + a(vh, zh) + sV (uh − u, vh) = 0 for all (vh, wh) ∈ Vh × Wh. (9)

3. Hypotheses on forms and interpolants

Consider the general, positive semi-definite, symmetric stabilization operators, sV : Vh × Vh �→ R, sW : Wh × Wh �→R. We 
assume that sV (u, vh), with u the solution of (2), is explicitly known; it may depend on data from l(w) or measurements 
of u. Assume that both sV and sW define semi-norms on Hs(Ω) + Vh and Hs(Ω) + Wh respectively, for some s ≥ 1,

|v + vh|sZ := sZ (v + vh, v + vh)
1
2 , ∀v ∈ Hs(Ω), vh ∈ Zh, with Z = V , W . (10)

Then assume that there exist interpolation operators iV : V �→ Vh and iW : W �→ Wh and norms ‖ · ‖∗,V and ‖ · ‖∗,W defined 
on V and W respectively, such that the form a(u, v) satisfies the continuities
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