FISEVIER

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Numerical analysis

Error estimates for stabilized finite element methods applied to ill-posed problems

Estimations d'erreurs pour des méthodes d'éléments finis stabilisées appliquées à des problèmes mal posés

Erik Burman

Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom

ARTICLE INFO

Article history: Received 10 March 2014 Accepted after revision 17 June 2014 Available online 21 July 2014

Presented by the Editorial Board

ABSTRACT

We propose an analysis for the stabilized finite element methods proposed in Burman (2013) [2] valid in the case of ill-posed problems for which only weak continuous dependence can be assumed. A priori and a posteriori error estimates are obtained without assuming coercivity or inf-sup stability of the continuous problem.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cette note, nous proposons une nouvelle analyse pour les méthodes d'éléments finis stabilisées introduites dans Burman (2013) [2], appliquées a des problèmes mal posés avec des propriétés de dépendance continue faibles. Nous obtenons des estimations a priori et a posteriori sans supposer ni coercitivité ni stabilité inf-sup de la forme bilinéaire du problème continu.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We are interested in the numerical approximation of ill-posed problems. The abstract theory will be illustrated by the following linear elliptic Cauchy problem. Let Ω be a convex polygonal (polyhedral) domain in \mathbb{R}^d , d=2,3, and consider the equation

$$\begin{cases}
-\Delta u = f, & \text{in } \Omega \\
u = 0 & \text{and} \quad \nabla u \cdot n = \psi \quad \text{on } \Gamma
\end{cases}$$
(1)

where $\Gamma \subset \partial \Omega$ denotes a simply connected part of the boundary and $f \in L^2(\Omega)$, $\psi \in H^{\frac{1}{2}}(\Gamma)$. Introducing the spaces $V := \{v \in H^1(\Omega) : v|_{\Gamma} = 0\}$ and $W := \{v \in H^1(\Omega) : v|_{\Gamma'} = 0\}$, where $\Gamma' := \partial \Omega \setminus \Gamma$ and the forms $a(u, w) := \int_{\Omega} \nabla u \cdot \nabla w \, dx$, and $l(w) := \int_{\Omega} f w \, dx + \int_{\Gamma} \psi \, w \, ds$ Eq. (1) may be cast in the abstract weak formulation, find $u \in V$ such that

E-mail address: E.Burman@ucl.co.uk.

$$a(u, w) = l(w) \quad \forall w \in W. \tag{2}$$

It is well known that the Cauchy problem (1) is not well-posed in the sense of Hadamard. If l(w) is such that a sufficiently smooth, exact solution exists, conditional continuous dependence estimates can nevertheless be obtained [1].

The objective of the present paper is to study numerical methods for ill-posed problems of the form (2), where $a: V \times W \mapsto \mathbb{R}$ and $l: W \mapsto \mathbb{R}$ are a bilinear and a linear form. Assume that the linear form l(w) is such that the problem (2) admits a unique solution $u \in V$. Define the following dual norm on l, $||l||_{W'} := \sup_{\|w\|_{W}=1} |l(w)|$. Observe that we do not assume that (2) admits a unique solution for all l(w) such that $||l||_{W'} < \infty$. The stability property we assume to be satisfied by (2) is the following continuous dependence.

Assumption: continuous dependence on data. Consider the functional $j: V \mapsto \mathbb{R}$. Let $\mathcal{Z}: \mathbb{R}^+ \mapsto \mathbb{R}^+$ be a continuous, monotone increasing function with $\lim_{x \to 0^+} \mathcal{Z}(x) = 0$. Let $\epsilon > 0$.

Assume that there holds
$$||l||_{W'} \le \epsilon$$
 in (2) then, for ϵ sufficiently small, $|j(u)| \le \mathcal{Z}(\epsilon)$. (3)

For the example of the Cauchy problem (1), it is known [1, Theorems 1.7 and 1.9] that if (1) admits a unique solution $u \in H^1(\Omega)$, a continuous dependence of the form (3), with $0 < \epsilon < 1$, holds for

$$j(u) := \|u\|_{L^2(\omega)}, \omega \subset \Omega : \operatorname{dist}(\omega, \partial \Omega) =: d_{\omega, \partial \Omega} > 0 \quad \text{with } \Xi(x) := C_{u,\zeta} x^{\zeta}, C_{u,\zeta} > 0, \zeta := \zeta(d_{\omega, \partial \Omega}) \in (0, 1)$$

and for

$$j(u) := \|u\|_{L^{2}(\Omega)} \quad \text{with } \Xi(x) := C_{u}(|\log(x)| + C)^{-\zeta} \text{ with } C_{u}, C > 0, \zeta \in (0, 1).$$
 (5)

Note that to derive these results, $l(\cdot)$ is first associated with its Riesz representant in W (cf. [1, Eq. (1.31)] and discussion). The constant $C_{u\varsigma}$ in (4) grows monotonically in $\|u\|_{L^2(\Omega)}$ and C_u in (5) grows monotonically in $\|u\|_{H^1(\Omega)}$.

2. Finite element discretization

Let \mathcal{K}_h be a shape regular, conforming, subdivision of Ω into non-overlapping triangles κ . The family of meshes $\{\mathcal{K}_h\}_h$ is indexed by the mesh parameter $h:=\max(\operatorname{diam}(\kappa))$. Let \mathcal{F}_I be the set of interior faces in \mathcal{K}_h and \mathcal{F}_{Γ} , $\mathcal{F}_{\Gamma'}$ the set of element faces of \mathcal{K}_h whose interior intersects Γ and Γ' respectively. We assume that the mesh matches the boundary of Γ so that $\mathcal{F}_{\Gamma} \cap \mathcal{F}_{\Gamma'} = \emptyset$. Let X_h^1 denote the standard finite element space of continuous, affine functions. Define $V_h := V \cap X_h^1$ and $W_h := W \cap X_h^1$. We may then write the finite element method: find $(u_h, z_h) \in V_h \times W_h$ such that,

$$\frac{a(u_h, w_h) - s_W(z_h, w_h) = l(w_h)}{a(v_h, z_h) + s_V(u_h, v_h) = s_V(u, v_h)} \quad \text{for all } (v_h, w_h) \in V_h \times W_h.$$
(6)

A possible choice of stabilization operators for the problem (1) are

$$s_V(u_h, v_h) := \sum_{F \in \mathcal{F}_I \cup \mathcal{F}_{\Gamma}} \int_F h_F[\partial_n u_h][\partial_n v_h] \, \mathrm{d}s, \quad \text{with } h_F := \mathrm{diam}(F)$$
 (7)

and

$$s_W(z_h, w_h) := a(z_h, w_h) \quad \text{or} \quad s_W(z_h, w_h) := \sum_{F \in \mathcal{F}_I \cup \mathcal{F}_{\Gamma'}} \int_F h_F[\partial_n z_h] [\partial_n w_h] \, \mathrm{d}s \tag{8}$$

where $[\partial_n u_h]$ denotes the jump of $\nabla u_h \cdot n_F$ for $F \in \mathcal{F}_I$ and when $F \in \mathcal{F}_\Gamma$ or $F \in \mathcal{F}_{\Gamma'}$ define $[\partial_n u_h]|_F := \nabla u_h \cdot n_{\partial \Omega}$. Unique existence of (u_h, z_h) solution to (6)–(8) follows using the arguments of [2, Proposition 3.3]. By inspection we have that the system (6) is consistent with (2) for $z_h = 0$. Taking the difference of (6) and the relation (2), with $w = w_h$, we obtain the Galerkin orthogonality,

$$a(u_h - u, w_h) - s_W(z_h, w_h) + a(v_h, z_h) + s_V(u_h - u, v_h) = 0 \quad \text{for all } (v_h, w_h) \in V_h \times W_h.$$
(9)

3. Hypotheses on forms and interpolants

Consider the general, positive semi-definite, symmetric stabilization operators, $s_V: V_h \times V_h \mapsto \mathbb{R}$, $s_W: W_h \times W_h \mapsto \mathbb{R}$. We assume that $s_V(u, v_h)$, with u the solution of (2), is explicitly known; it may depend on data from l(w) or measurements of u. Assume that both s_V and s_W define semi-norms on $H^s(\Omega) + V_h$ and $H^s(\Omega) + W_h$ respectively, for some $s \ge 1$,

$$|v + v_h|_{S_7} := s_Z(v + v_h, v + v_h)^{\frac{1}{2}}, \quad \forall v \in H^s(\Omega), v_h \in Z_h, \text{ with } Z = V, W.$$
 (10)

Then assume that there exist interpolation operators $i_V: V \mapsto V_h$ and $i_W: W \mapsto W_h$ and norms $\|\cdot\|_{*,V}$ and $\|\cdot\|_{*,W}$ defined on V and W respectively, such that the form a(u,v) satisfies the continuities

Download English Version:

https://daneshyari.com/en/article/4670091

Download Persian Version:

https://daneshyari.com/article/4670091

<u>Daneshyari.com</u>