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RESUME

Nous introduisons une classe d'intégrales d’action définies sur I'espace des chemins a
valeurs mesures de probabilité. Dans ce contexte I'action minimale existe et donne une
solution faible d'une équation d’Euler compressible. Nous montrons que I'équation de
Hamilton Jacobi associ'ee a la formulation variationnelle de I'équation d’Euler est bien
posée dans le sens des solutions de viscosité.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We denote by P, (Rd) the space of Borel probability measures over RY with fRd |x|2 p(dx) < oo endowed with the Wasser-
stein 2-metric d. AC(0, T; P»(R%)) is the class of P, (R%)-valued absolute continuous curves. Each p(-) in such class satisfies
the continuity equation p := 9;p = —div(pu) for some u (Theorem 8.3.1 of [1]). This equation expresses a conservation of
mass property and naturally introduces a class of parameterized curves, which motivates the following notion of tangent
space and associated geometric structure on P,(R%) (Chapter 8 of [1,6]):

Ho1p(RY):={meD'RY): Iml|l_1, <oo}. [m|%,,:= sup {2(m.¢)— el ,}. M
PeCE®Y)

In the above, ||<p||%_p = [pa IV@[*dp. It follows that [pq |ul?>dp = ||,é||271,p. We denote R :=R U {£o00}.

Definition 1.1 (Gradient of a function). Let f : P(R%) > R, pg € P2(RY), and f(pp) be finite. We say that gradient of f at g,
denoted gradf(pp), exists, if it can be identified as the unique element in D'(R?) satisfying the following property: for
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every p € Cfo(Rd) and the family of push forward of py through the flow generated by Vp, ie. {pP(t) € P2(RY: t € R}
with 8, pP + div(p?Vp) =0 and pP (0) = po, we have lim—ot~' (f(pP (1)) — f(pP(0))) =: (grad f (po), p).

Let R(p|ln) = /].Rd dplogd—ﬁ denote relative entropy, define Gibbs measure p¥ (dx) := Z;le*"” with Zy = fRd e~¥ dx,
and entropy functional S(p) := R(p||n?). It follows then grad S(p) = —Ap — div(oV¥) whenever S(p) < oo. Let ¥ :=
V¥ |2 — 2AY, the Fisher information I(p) := |\grad5(p)||2_1’p = fpa |v£|2 dx + [pa¥ dp (Appendix D.6 of [3]). Let v > 0,
we introduce a modified kinetic energy T(p, p) := %Ilﬁ + vgradS(p)HZ_l,p to reinforce entropy dissipation (see [4] and its

appendix). Let potential energy

1
V(p) :=/¢(X)p(dX)+5//¢(X—y)p(d)<)p(dy)+/F(p(x)) dx.
Rd

RIRA R4

Without pursuing generality, we assume that @, ¢ € C!(RY) have sub-quadratic growth, ®(—x) = ®(x), ¥ € C*(R?) is quasi-
convex and that the leading order terms for both ¥ and ¥ have polynomial growth of order bigger than 2 (e.g. ¥ (x) =
/x4 — 1x|2). Finally, let F € C' be such that |F(r)| < cr?, |rF'(r)| < c(1 +17) for some finite ¢ >0 and some y >1 where

yel[l,1+ %) when d >3 and y €[1,2) when d =1, 2. For notational convenience, we set V(p) = —oo whenever p €

P,(RY) has no Lebesgue density. The following is a consequence of Sobolev inequality and the fact that fRd p(dx) = 1.
See [4]:

Lemma 1.2. There exists a right continuous nondecreasing sub-linear function ¢ : R+ — Ry with |V (p)| < ¢(I(p)). Moreover, V is
continuous on finite level sets of I.

For p(-) € AC(0, T; P;(R%) with S(p(0)) < co, by the calculus in [1], fOT T(p, p)dt = %fOT(H,éHZ_Lp + v2I(p))dt +
v(S(p(T)) — S(p(0))). This observation motivates us considering Lagrangians L and L:P,@®RY x D'RY) — R U {+00} by
L:=T—Vand [:= %npuE],p + "2—21 — V, where L is understood as +oo when V = +oo. L takes value in R U {+o0}. L,

however, is only well defined when V is bounded from above in bounded sets of P, (RY) (e.g. F(r) < cr for some ¢ > 0 will
ensure this). Denote

T T

arlp0]= [ Lo prae Irlp0]i= [ Lo prde pe) C(0.TEPo(R)). @)
0 0

When both At and Jr are well defined and S(0(0)) < oo, we have the following useful identity: Ar[p()] = Jr[p()] +
v(S(p(T)) — S(p(0))) for p € AC(O, T; Pz(Rd)). Action minimizer for At and Jr are the same under mild conditions, and
solves a compressible Euler equation (Theorem 2.1)

orp + div(pu) =0
ot(pu) +div(pu @u) + VP(p) = —pV(p+ P * p) — 2v2pV(A—\/‘/ﬁ/_) - }1¢>
P(p) = pF'(p) — F(p).

If (o, u) are smooth for (3) to hold in classical sense, then it is also a weak solution as defined below.

—
w
—

Definition 1.3 (Weak solution). (p, u) is called a weak solution to system (3) if the following holds: p(-) € AC(0, T; P> (R%))
with S(o(T)) +f0T I(p(t))dt < 00; u: (0, T) x R — RY is Borel measurable satisfying fOT Jga lu(t, %12 p(t) dt < oo; moreover,
ot p + div(pu) = 0 holds in the distribution sense and

T
/ / [u(t, X) - (Ot %) + (U - VIEW, 0)p(t, X) + P(p)divE — (V(§ + D * p) - &) p(t, X)
0 Rd
+ vz(—E - DE - ve + Adive + 15 : VI/I)p(t,X)] dxdt =0,
1Y Y 2
holds for every & € C2°((0, T) x R?; RY), where D& = (3i€j) ¢, j) is a matrix.

A satisfactory Hamilton-Jacobi PDE theory can also be developed (Theorem 2.2), based upon a Hamiltonian induced by
the Lagrangian L, not the L. For V(p) < oo and n=—div(pVp) with p € CSO(R"), let

1
H(p.m:= sup ((n,m)—1,—L(p,m))=—(vgradS(p),n)_, ,+ Ellnllil,p +V(p).
meH_1,,(RY) ’
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