ELSEVIER

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Partial Differential Equations/Optimal Control

A Hamilton–Jacobi PDE in the space of measures and its associated compressible Euler equations

Une EDP de Hamilton–Jacobi dans l'espace des mesures et ses équations d'Euler compressibles associées

Jin Feng ¹

Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA

ARTICLE INFO

Article history: Received 3 January 2011 Accepted after revision 18 August 2011 Available online 8 September 2011

Presented by the Editorial Board

ABSTRACT

We introduce a class of action integrals defined over probability-measure-valued path space. Minimal action exists in this context and gives weak solution to a compressible Euler equation. We prove that the Hamilton-Jacobi PDE associated with such variational formulation of Euler equation is well posed in viscosity solution sense.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous introduisons une classe d'intégrales d'action définies sur l'espace des chemins à valeurs mesures de probabilité. Dans ce contexte l'action minimale existe et donne une solution faible d'une équation d'Euler compressible. Nous montrons que l'équation de Hamilton Jacobi associ'ee à la formulation variationnelle de l'équation d'Euler est bien posée dans le sens des solutions de viscosité.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We denote by $\mathcal{P}_2(\mathbb{R}^d)$ the space of Borel probability measures over \mathbb{R}^d with $\int_{\mathbb{R}^d} |x|^2 \rho(\mathrm{d}x) < \infty$ endowed with the Wasserstein 2-metric d. $AC(0,T;\mathcal{P}_2(\mathbb{R}^d))$ is the class of $\mathcal{P}_2(\mathbb{R}^d)$ -valued absolute continuous curves. Each $\rho(\cdot)$ in such class satisfies the continuity equation $\dot{\rho}:=\partial_t\rho=-\operatorname{div}(\rho u)$ for some u (Theorem 8.3.1 of [1]). This equation expresses a conservation of mass property and naturally introduces a class of parameterized curves, which motivates the following notion of tangent space and associated geometric structure on $\mathcal{P}_2(\mathbb{R}^d)$ (Chapter 8 of [1,6]):

$$H_{-1,\rho}(\mathbb{R}^d) := \{ m \in \mathcal{D}'(\mathbb{R}^d) \colon \|m\|_{-1,\rho} < \infty \}, \quad \|m\|_{-1,\rho}^2 := \sup_{\varphi \in C_c^{\infty}(\mathbb{R}^d)} \{ 2\langle m, \varphi \rangle - \|\varphi\|_{1,\rho}^2 \}.$$
 (1)

In the above, $\|\varphi\|_{1,\rho}^2 = \int_{\mathbb{R}^d} |\nabla \varphi|^2 \,\mathrm{d}\rho$. It follows that $\int_{\mathbb{R}^d} |u|^2 \,\mathrm{d}\rho = \|\dot{\rho}\|_{-1,\rho}^2$. We denote $\overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$.

Definition 1.1 (*Gradient of a function*). Let $f: \mathcal{P}_2(\mathbb{R}^d) \mapsto \overline{\mathbb{R}}$, $\rho_0 \in \mathcal{P}_2(\mathbb{R}^d)$, and $f(\rho_0)$ be finite. We say that gradient of f at ρ_0 , denoted grad $f(\rho_0)$, exists, if it can be identified as the unique element in $\mathcal{D}'(\mathbb{R}^d)$ satisfying the following property: for

E-mail address: jfeng@math.ku.edu.

¹ The research is supported in part by research grants from Army Research Office and from the American Institute of Mathematics.

every $p \in C_c^{\infty}(\mathbb{R}^d)$ and the family of push forward of ρ_0 through the flow generated by ∇p , i.e. $\{\rho^p(t) \in \mathcal{P}_2(\mathbb{R}^d): t \in \mathbb{R}\}$ with $\partial_t \rho^p + \operatorname{div}(\rho^p \nabla p) = 0$ and $\rho^p(0) = \rho_0$, we have $\lim_{t \to 0} t^{-1}(f(\rho^p(t)) - f(\rho^p(0))) =: \langle \operatorname{grad} f(\rho_0), p \rangle$.

Let $R(\rho\|\mu):=\int_{\mathbb{R}^d}\mathrm{d}\rho\log\frac{\mathrm{d}\rho}{\mathrm{d}\mu}$ denote relative entropy, define Gibbs measure $\mu^\Psi(\mathrm{d}x):=Z_\Psi^{-1}e^{-\Psi}$ with $Z_\Psi=\int_{\mathbb{R}^d}e^{-\Psi}\,\mathrm{d}x$, and entropy functional $S(\rho):=R(\rho\|\mu^\Psi)$. It follows then $\mathrm{grad}\,S(\rho)=-\Delta\rho-\mathrm{div}(\rho\nabla\Psi)$ whenever $S(\rho)<\infty$. Let $\psi:=|\nabla\Psi|^2-2\Delta\Psi$, the Fisher information $I(\rho):=\|\mathrm{grad}\,S(\rho)\|_{-1,\rho}^2=\int_{\mathbb{R}^d}\frac{|\nabla\rho|^2}{\rho}\,\mathrm{d}x+\int_{\mathbb{R}^d}\psi\,\mathrm{d}\rho$ (Appendix D.6 of [3]). Let $\nu>0$, we introduce a modified kinetic energy $T(\rho,\dot{\rho}):=\frac{1}{2}\|\dot{\rho}+\nu\mathrm{grad}\,S(\rho)\|_{-1,\rho}^2$ to reinforce entropy dissipation (see [4] and its appendix). Let potential energy

$$V(\rho) := \int_{\mathbb{R}^d} \phi(x) \rho(\mathrm{d}x) + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \Phi(x - y) \rho(\mathrm{d}x) \rho(\mathrm{d}y) + \int_{\mathbb{R}^d} F(\rho(x)) \, \mathrm{d}x.$$

Without pursuing generality, we assume that Φ , $\phi \in C^1(\mathbb{R}^d)$ have sub-quadratic growth, $\Phi(-x) = \Phi(x)$, $\Psi \in C^4(\mathbb{R}^d)$ is quasi-convex and that the leading order terms for both Ψ and ψ have polynomial growth of order bigger than 2 (e.g. $\Psi(x) = \frac{1}{4}|x|^4 - |x|^2$). Finally, let $F \in C^1$ be such that $|F(r)| \leq cr^{\gamma}$, $|rF'(r)| \leq c(1+r^{\gamma})$ for some finite $c \geq 0$ and some $\gamma \geq 1$ where $\gamma \in [1, 1+\frac{2}{d})$ when $0 \geq 3$ and $\gamma \in [1, 2)$ when 0 = 1, 2. For notational convenience, we set $0 \leq 1$ 0 whenever $0 \leq 1$ 1. See [4]:

Lemma 1.2. There exists a right continuous nondecreasing sub-linear function $\zeta: R_+ \mapsto \mathbb{R}_+$ with $|V(\rho)| \leq \zeta(I(\rho))$. Moreover, V is continuous on finite level sets of I.

For $\rho(\cdot) \in AC(0,T;\mathcal{P}_2(\mathbb{R}^d))$ with $S(\rho(0)) < \infty$, by the calculus in [1], $\int_0^T T(\rho,\dot{\rho})\,\mathrm{d}t = \frac{1}{2}\int_0^T (\|\dot{\rho}\|_{-1,\rho}^2 + \nu^2 I(\rho))\,\mathrm{d}t + \nu(S(\rho(T)) - S(\rho(0)))$. This observation motivates us considering Lagrangians L and $\hat{L}:\mathcal{P}_2(\mathbb{R}^d) \times \mathcal{D}'(\mathbb{R}^d) \mapsto \mathbb{R} \cup \{+\infty\}$ by L:=T-V and $\hat{L}:=\frac{1}{2}\|\dot{\rho}\|_{-1,\rho}^2 + \frac{\nu^2}{2}I-V$, where \hat{L} is understood as $+\infty$ when $V=+\infty$. \hat{L} takes value in $\mathbb{R} \cup \{+\infty\}$. \hat{L} , however, is only well defined when V is bounded from above in bounded sets of $\mathcal{P}_2(\mathbb{R}^d)$ (e.g. $F(r) \leqslant cr$ for some c>0 will ensure this). Denote

$$A_T[\rho(\cdot)] := \int_0^T L(\rho, \dot{\rho}) \, \mathrm{d}t, \qquad J_T[\rho(\cdot)] := \int_0^T \hat{L}(\rho, \dot{\rho}) \, \mathrm{d}t, \quad \rho(\cdot) \in C([0, T]; \mathcal{P}_2(\mathbb{R}^d)). \tag{2}$$

When both A_T and J_T are well defined and $S(\rho(0)) < \infty$, we have the following useful identity: $A_T[\rho(\cdot)] = J_T[\rho(\cdot)] + \nu(S(\rho(T)) - S(\rho(0)))$ for $\rho \in AC(0, T; \mathcal{P}_2(\mathbb{R}^d))$. Action minimizer for A_T and J_T are the same under mild conditions, and solves a compressible Euler equation (Theorem 2.1)

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0 \\ \partial_t (\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla P(\rho) = -\rho \nabla (\phi + \Phi * \rho) - 2v^2 \rho \nabla \left(\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}} - \frac{1}{4} \psi \right) \\ P(\rho) = \rho F'(\rho) - F(\rho). \end{cases}$$
(3)

If (ρ, u) are smooth for (3) to hold in classical sense, then it is also a weak solution as defined below.

Definition 1.3 (Weak solution). (ρ, u) is called a weak solution to system (3) if the following holds: $\rho(\cdot) \in AC(0, T; \mathcal{P}_2(\mathbb{R}^d))$ with $S(\rho(T)) + \int_0^T I(\rho(t)) \, dt < \infty$; $u: (0, T) \times \mathbb{R}^d \mapsto \mathbb{R}^d$ is Borel measurable satisfying $\int_0^T \int_{\mathbb{R}^d} |u(t, x)|^2 \rho(t) \, dt < \infty$; moreover, $\partial_t \rho + \operatorname{div}(\rho u) = 0$ holds in the distribution sense and

$$\int_{0}^{T} \int_{\mathbb{R}^{d}} \left[u(t,x) \cdot \left(\partial_{t} \xi(t,x) + (u \cdot \nabla) \xi(t,x) \right) \rho(t,x) + P(\rho) \operatorname{div} \xi - \left(\nabla(\phi + \Phi * \rho) \cdot \xi \right) \rho(t,x) \right] + v^{2} \left(-\frac{\nabla \rho}{\rho} \cdot D\xi \cdot \frac{\nabla \rho}{\rho} + \Delta \operatorname{div} \xi + \frac{1}{2} \xi \cdot \nabla \psi \right) \rho(t,x) dx dt = 0,$$

holds for every $\xi \in C_c^{\infty}((0,T) \times \mathbb{R}^d; \mathbb{R}^d)$, where $D\xi = (\partial_i \xi_j)_{(i,j)}$ is a matrix.

A satisfactory Hamilton–Jacobi PDE theory can also be developed (Theorem 2.2), based upon a Hamiltonian induced by the Lagrangian L, not the \hat{L} . For $V(\rho) < \infty$ and $n = -\operatorname{div}(\rho \nabla p)$ with $p \in C_c^{\infty}(\mathbb{R}^d)$, let

$$H(\rho,n) := \sup_{m \in H_{-1,\rho}(\mathbb{R}^d)} \left(\langle n, m \rangle_{-1,\rho} - L(\rho,m) \right) = - \left\langle \nu \operatorname{grad} S(\rho), n \right\rangle_{-1,\rho} + \frac{1}{2} \|n\|_{-1,\rho}^2 + V(\rho).$$

Download English Version:

https://daneshyari.com/en/article/4670358

Download Persian Version:

https://daneshyari.com/article/4670358

<u>Daneshyari.com</u>