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a b s t r a c t

Type 1 diabetic patients depend on insulin therapy to maintain blood glucose levels within

safe range. The idea behind the “Artificial Pancreas” is to mimic, as close as possible, the

functions of the natural pancreas in glucose sensing and insulin delivery, by using closed-

loop control techniques. This work presents a model-based predictive control strategy for

blood glucose regulation in diabetic patients. The controller is provided with a feedforward

loop to improve meal compensation, a gain scheduling scheme to improve the controller

performance in controlling the nonlinear glucose–insulin system, and an asymmetric cost

function to reduce the hypoglycemic risk. Simulation scenarios with virtual patients are

used to test the designed controller. The obtained results show a good controller per-

formance in fasting conditions and meal disturbance rejection, and robustness against

measurements errors, meal estimation errors, and changes in insulin sensitivity.

© 2010 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Diabetes is a metabolic disorder characterized by the pan-
creas inability to maintain glucose levels within safe range
(70–180 mg/dL). In type 1 diabetes mellitus (T1DM), the
immune system attacks and destroys the insulin producing �-
cells. Therefore, patients with T1DM need exogenous insulin
delivery to achieve near-normal glucose levels. If glucose is not
controlled carefully within a tight range, chronic (e.g. cardio-
vascular diseases, nephropathy, and retinopathy), and acute
(e.g. ketoacidosis and hypoglycemic coma) complications can
occur, with the latter being more life-threatening.

Since the 1970s, the idea of artificial pancreas (AP) has been
addressed as a solution to replace the existing treatment, and
to improve the disease management [1,2]. While no commer-
cial AP is currently available, the components of the AP; the
continuous subcutaneous insulin infusion pump (CSII), and
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the continuous glucose monitors (CGM), are being used in
open-loop setup. Recently, the CGM technology has improved
significantly, and the reliable duration of in vivo sensors
continues to increase. Frequent CGM measurements provide
the possibility of predicting hypoglycemic and hyperglycemic
events and suggesting corrective actions. The commercial
availability of CGM systems has encouraged the research into
artificial pancreas. Although the sensors and pumps systems
still present some limitations, their use has resulted in better
clinical outcomes over conventional therapy [3].

Several studies demonstrated the feasibility of closed-loop
insulin delivery systems [4–8], and a wide spectrum of closed-
loop control algorithms were proposed [1,2,4,9–13]. However,
there exist many factors that make it very difficult to find
a general and reliable solution for the problem of glycemic
control, such as inter- and intra-patients variability in insulin
sensitivity, variability in patient condition, and the limitations
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of the subcutaneous (s.c.) route used for glucose sensing and
insulin delivery. Therefore, the development of a reliable con-
trol algorithm to close the loop can be viewed as a dramatic
step in the progress of the artificial pancreas.

This article presents a constrained model predictive control
(MPC) algorithm for the blood glucose (BG) control problem in
T1DM. The proposed MPC scheme employs: gain scheduling
technique, feedforward control, soft output constraints with
asymmetric cost function, and hard input constraints. The
gain scheduling (GS) technique monitors the glucose level and
assigns specific insulin dosing profile for each glycemic range,
and enhances the performance of the linear MPC in control-
ling the nonlinear patient model. The feedforward control is
used to improve postprandial performance by an anticipa-
tory control action that prevents large hyperglycemic peaks
after meals. Output constraints are used and implemented
with unequal degrees of softness using an asymmetric cost
function to penalize hypoglycemia more aggressively than
hyperglycemia, since the former is more life-threatening. Hard
constraints are imposed on insulin input due to patient’s
safety and pump hardware specifications concerns. Finally,
state estimation is used to minimize prediction errors that
result from unpredicted dynamics, and to improve noise rejec-
tion.

The designed controller is evaluated in silico; different
simulations with virtual diabetic subjects have been used
to test and tune the controller. The simulation scenarios
aimed at testing the controller performance against many
factors, such as meal disturbance, measurements errors, pos-
sible erroneous estimation of carbohydrates’ amount in meals,
variation in insulin sensitivity, and inter-patients variability.

The paper is structured as follows: Section 2 describes the
patient model used in this work; in Section 3, the idea of
the developed closed-loop algorithm – composed of MPC with
feedforward control and GS scheme – is discussed; the results
obtained in the simulation scenarios are presented and dis-
cussed in Section 4; and finally the conclusions are drawn in
Section 5.

2. Simulation model

Several models are being used to describe the glucose–insulin
system. These models range from linear models (e.g. Acker-
man model [14]), to simple nonlinear models (e.g. Bergman et
al. [15]), and more comprehensive mathematical models (e.g.
Sorensen [16], Hovorka [17,18], and Dalla Man [19,20]). For a
detailed review on available models, see [14]. The model devel-
oped by Hovorka et al. [17,18] is used in this work to represent
the diabetic patients (virtual subjects). The model includes
three subsystems; plasma glucose, plasma and subcutaneous
insulin, and insulin action subsystems. The model shows a
good trade-off between simplicity and accuracy.

2.1. Glucose–insulin model

2.1.1. Carbohydrates digestion and absorption
This model describes the carbohydrates catabolism to
monosaccharides (mostly glucose) taking place during meal
digestion, as well as intestinal absorption. The glucose absorp-

tion rate, UG(t), is given by

UG(t) = DGAGte−t/tmax,G

t2
max,G

(1)

where DG is the amount of carbohydrates ingested, AG is car-
bohydrate bio-availability and tmax,G is the time-of-maximum
appearance of glucose in plasma [18].

2.1.2. Subcutaneous insulin absorption
Subcutaneous absorption of bolus and infused insulin is mod-
eled by means of a linear two-compartmental system [18]:

dS1(t)
dt

= u(t) − S1(t)
tmax,I

,
dS2(t)

dt
= S1(t)

tmax,I
− S2(t)

tmax,I
(2)

where u(t) represents the administration (bolus and infusion)
of insulin, tmax,I is the time-to-maximum insulin absorption,
and S1(t), S2(t) are the insulin masses in the accessible and
non-accessible subcutaneous compartments. The exogenous
insulin flow is thus given by

Iex(t) = S2(t)
tmax,I

. (3)

2.1.3. Insulin PK/PD
Insulin pharmacokinetics is considered of first order. Plasma
insulin concentration, I(t), is thus described as

dI(t)
dt

= Iex(t)
VI

− keI(t) (4)

where Iex(t) is the exogenous insulin absorption rate described
above, ke is the fractional elimination rate and VI is the insulin
distribution volume. Plasma insulin concentration is consid-
ered to have an effect on glucose transport from plasma to
tissues, hepatic glucose production and peripheral glucose
disposal [18]. These actions are modeled as first-order pro-
cesses:

dx1(t)
dt

= −ka1x1(t) + ka1SITI(t)

dx2(t)
dt

= −ka2x2(t) + ka2SIDI(t)

dx3(t)
dt

= −ka3x3(t) + ka3SIEI(t)

(5)

where x1(t) represents the effects of insulin on glucose dis-
tribution/transport, x2(t) represents the effect on glucose
disposal and x3(t) is the effect on endogenous glucose pro-
duction; kai, i = 1, . . ., 3 are the deactivation rate constants and
SIT, SID and SIE, represent respectively insulin sensitivities to
transport, disposal and endogenous glucose production.
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