

Algebraic Geometry

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

The Nash problem for a toric pair and the minimal log-discrepancy

Problème de Nash pour une paire torique et la log-discrépance minimale

Shihoko Ishii

Department of Mathematics, Tokyo Institute of Technology, Oh-Okayama, Meguro, 152-8551 Tokyo, Japan

1. Introduction

The Nash problem was posed by John F. Nash in his preprint (1968) which is published later as [9]. The problem is asking the bijectivity between the set of Nash components and the set of essential divisors of a singular variety *X*. The problem is answered positively for toric varieties and negatively in general [6]. As the counter examples are of dimension greater than 3, the Nash problem is still open for surfaces and 3-folds. The Nash problem for a surface is now steadily improving thanks to the work of M. Lejeune-Jalabert and A. Reguera-Lopez [7,8]. A Nash component is an irreducible component of the family of arcs passing through the singular locus. So it does not depend on the existence of a resolution of the singularities of *X*, while an essential divisor is defined by using resolutions of the singularities of *X*. The study of some examples gives us a feeling that we can get the information of the singularities of *X* from the information of the Nash components (notion without resolutions) even for the properties defined by using resolutions.

In this Note, we consider the Nash problem for a pair consisting of a variety and an ideal on the variety. Our principles are:

(i) For an object in the toric category, the Nash problem should hold;

E-mail address: shihoko@math.titech.ac.jp.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. [doi:10.1016/j.crma.2010.07.034](http://dx.doi.org/10.1016/j.crma.2010.07.034)

(ii) We should be able to see whether the singularities of the pair is log-canonical/log-terminal from information given by the Nash components.

(The first principle seems reasonable since we have some evidences [2,6,3,4]. The second principle is based on the observation for the counter example of the Nash problem [6].) We will show the principles are true for a toric pair consisting of a toric variety and an invariant ideal. When we consider a pair, the primary problem is how to formulate the Nash problem for the pair. Peter Petrov formulated the Nash problem for a toric pair and gave an affirmative answer in [10]. But his Nash components do not satisfy (ii). Our formulation of the Nash problem for a toric pair is different from his, but we use his result for our problem. Our Nash components are constructed on a modified space of *X* and this idea suggests a direction for the Nash problem in the general case (JSPS Grant-in-Aid No. 22340004, No. 19104001).

2. The Nash problem and minimal log-discrepancy

Definition 2.1. Let *^X* be a scheme over an algebraically closed field *^k*. An arc of *^X* is a *^k*-morphism *α* : Spec *^K***[***t***]** → *^X*, where *K* \supset *k* is a field extension. The space of arcs of *X* is denoted by X_{∞} and the canonical projection $X_{\infty} \to X$ is denoted by π^X . For a morphism $f: Y \to X$ of *k*-schemes, the induced morphism between the arc spaces is denoted by $f_{\infty}: Y_{\infty} \to X_{\infty}$. One can find basic materials on the space of arcs in [5].

From now on we consider a pair (X, Z) consisting of a variety X over k and a closed subscheme $Z \subset X$, or equivalently *(X,* a*)*, where a is the defining ideal of *Z*. We always assume that Sing *X* ⊂ |*Z*|.

Definition 2.2. A proper birational morphism *f* : *Y* → *X* with *Y* smooth, such that $f_{Y \setminus f^{-1}(Z)}$ is an isomorphism on *X* \ *Z* and $f^{-1}(Z)$ is of pure codimension 1 is called a *Z*-resolution. When f satisfies the further conditions: aO_Y is invertible and $|f^{-1}(Z)|$ is of normal crossings, then it is called a log-resolution of (X, Z) . A divisor over *X* is called *Z*-essential if it appears in every *Z*-resolution and is called log-essential if it appears in every log-resolution.

Definition 2.3. For a pair (X, Z) , let $f: Y \to X$ be a Z-resolution and E_i $(i = 1, ..., r)$ be the irreducible exceptional divisors of f. We say that E_i is a Z-Nash divisor if the closure of $f_{\infty}((\pi^Y)^{-1}(E_i))$ is an irreducible component of $(\pi^X)^{-1}(\text{Sing }X)$ and call this component a *Z*-Nash component. Note that among all divisors over *X* there is a unique *Z*-Nash divisor up to birational equivalence for a fixed *Z*-Nash component.

Theorem 2.4. *(See Petrov [10].) Let X be an affine toric variety and Z an invariant closed subscheme. Then the set of Z -Nash divisors and the set of Z -essential divisors coincide.*

Definition 2.5. Let *(X, Z)* be a pair with *X* a normal Q-Gorenstein variety. For a divisor *E* over *X*, the log-discrepancy of *(X, Z)* with respect to *E* is

$$
a(E; X, Z) := \text{ord}_E(K_{Y/X}) - \text{ord}_E(Z) + 1,
$$

where let *E* appears on a normal variety *Y* birational to *X*. The minimal log-discrepancy of *(X, Z)* is defined by

 $mld(X, Z) = \inf\{a(E; X, Z) \mid E \text{ divisor over } X\}.$

Note that if dim $X \ge 2$ and mld $(X, Z) < 0$, then mld $(X, Z) = -\infty$. A pair (X, Z) is log-canonical (resp. log-terminal) if and only if $mld(X, Z) \geq 0$ (resp. $mld(X, Z) > 0$). For a log-canonical pair (X, Z) , if $mld(X, Z) = a(E; X, Z)$, then we say that E computes the minimal log-discrepancy.

The following shows that *Z*-Nash divisor does not necessarily compute the minimal log-discrepancy for *(X, Z)*. The notation and terminologies on toric geometry are based on [1].

Example 1. Let X be $\mathbb{A}_{\mathbb{C}}^3$ and Z be defined by the ideal $\mathfrak{a} = (x_1^d x_2, x_2^d x_3, x_3^d x_1)$. Then, |Z| is the union of x_i -axes (*i* = 1, 2, 3). As a toric variety, X is defined by a cone $\sigma := \sum_{i=1}^{3} \mathbb{R}_{\geq 0} \mathbf{e}_i$ in $N_{\mathbb{R}} = \mathbb{R}^3$, where $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, $\mathbf{e}_3 = (0, 0, 1)$.

The Z-Nash divisors are $D_{\mathbf{p}_i}$ ($i = 1, 2, 3$) which correspond to $\mathbf{p}_1 = (0, 1, 1)$, $\mathbf{p}_2 = (1, 0, 1)$, $\mathbf{p}_3 = (1, 1, 0)$. When $d = 2$, we can see that mld(X, Z) = 0, while $a(D_{p_i}; X, Z) = 1$ for $i = 1, 2, 3$. When $d = 3$, we can see that mld(X, Z) = $-\infty$, while $a(D_{p_i}; X, Z) = 1$ for $i = 1, 2, 3$.

In order to produce divisors which compute the minimal log-discrepancy, we need to modify *X* into a more reasonable space. We will see that for a toric pair (X, Z) , the normalized blow up of *X* by the defining ideal α of *Z* is an appropriate space.

Download English Version:

<https://daneshyari.com/en/article/4670527>

Download Persian Version:

<https://daneshyari.com/article/4670527>

[Daneshyari.com](https://daneshyari.com)