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Experimental design issues are investigated for regression models with possibly censored

responses, arising typically from pharmacokinetic or virus dynamic experiments. Examples

are provided for both locally and Bayesian optimal designs. A case study in pharmacokinetics

is provided.
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1. Introduction

Censored measurements arise quite often in biomedical
experiments. Pharmacokinetics and virus dynamics are two
examples.

Pharmacokinetic models describe the change of drug con-
centration over time. Since drug concentration is measured
using an assay, which typically has been validated within a
range, the possibility exists that certain actual measurements
fall below the lowest concentration at which the validation
has been performed. In such cases, it is reported that the con-
centration is below the quantification limit of the assay [1].

In a simplistic form, virus dynamics can be viewed as a
model that describes the change of virus concentration over
time. Assays that are used to measure human immunodefi-
ciency virus (HIV) RNA and hepatitis C virus (HCV) RNA levels
also have lower limits of detection or quantification [2–4].

In both pharmacokinetics and virus dynamics, the mea-
surements are usually expressed as solutions to a system of
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ordinary differential equations; when the solutions exist in
closed form, nonlinear regression models arise. For exam-
ple, in ref. [4], the concentration of HCV RNA at time t, V(t),
follows

V(t) = ˇ[˛ e−�1(t−�) + (1 − ˛) e−�2(t−�)], t > �, (1)

where �1,2 = (� + ı)/2 ±
√

(� − ı)2 + 4(1 − ω)�ı/2, ˛ =
(ω� − �2)/(�1 − �2), ˇ, �, ω, � and ı are the parameters to
be estimated. A nonlinear regression model on the log scale
would specify

yi = logˇ + log[˛ e−�1(ti−�) + (1 − ˛) e−�2(ti−�)] + �i, �i
iid∼N(0, �2),

(2)

where N(0, �2) denotes a normal distribution with mean 0 and
variance �2.
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Taking into consideration a lower limit of detection at 100
copies per milliliter, the model would incorporate, in addition
to the above,

y∗
i = max{log100, yi}. (3)

More generally, the regression model in which the response
may be censored can be written as

yi = f (�, xi) + �i, �i
iid∼N(0, �2), y∗

i = max{c, yi}, (4)

where � and �2 are the unknown parameters and c is a con-
stant. Such a model can be fit via maximum likelihood. When
the mean function for y is linear in the parameters, it reduces
to the standard Tobit model [5,6], also known as the limited
dependent variable model:

yi = xT
i � + �i, �i

iid∼N(0, �2), y∗
i = max{c, yi}, (5)

where for linear models c is usually assumed to be 0 without
loss of generality.

2. Fisher information and optimality

In the usual regression models of the form yi = f(�, xi) + �i,
i = 1, . . ., n, where the �i’s are independent and identically dis-
tributed normal random variables with mean 0 and variance
�2, the Fisher information matrix with respect to (�T, �2)T can
be written as

⎛
⎜⎜⎝

1
�2

n∑
i=1

∇f (�, xi)∇Tf (�, xi) 0

0
n

2�4

⎞
⎟⎟⎠ , (6)

where � denotes the gradient with respect to �.
Suppose in designing an experiment, the predictor x is con-

strained in a compact subset X of a Euclidean space. Let 	 be
the class of probability distributions on the Borel sets on X,
then any 
 ∈ 	 is called a design measure on X. The concept of
Fisher information can be extended so that a design measure

 with sample size n has an information matrix

⎛
⎜⎝

n

�2

∫
∇f (�, x)∇Tf (�, x) d
(x) 0

0
n

2�4

⎞
⎟⎠ . (7)

An exact design of size n, which can be physically imple-
mented, can be viewed as a design measure 
 supported at x1,
. . ., xk, with probability masses 
1, . . ., 
k, such that n
j ∈N for
j = 1, . . ., k.

Under the usual regularity conditions, the asymptotic
covariance matrix of the maximum likelihood estimate of � is
proportional to �2

[∫
∇f (�, x)∇Tf (�, x) d
(x)

]−1
. It is hence con-

ventional to assume �2 known and equal to 1, as well as n = 1;
the Fisher information matrix (with respect to � only) then
becomes

∫
∇f (�, x)∇Tf (�, x) d
(x). The usual optimality crite-

ria are real-valued (or extended real-valued) functions of this
information matrix [7].

In the presence of censoring, the block-diagonality of the
Fisher information matrix does not hold any more. Assuming
that the primary interest remains in �, and �2 is treated as
a nuisance parameter, the suitable optimality criterion is Ds-
optimality defined as follows. For design 
, let l(�, �2, x) be the
log-likelihood function evaluated at x and let M(
; �, �2) denote
the Fisher information matrix for design 
:

−
∫ ⎡

⎢⎣E

⎛
⎜⎝

∂2

∂�∂�T
l(�, �2, x)

∂2

∂�∂�2
l(�, �2, x)

∂2

∂�2∂�T
l(�, �2, x)

∂2

∂(�2)2
l(�, �2, x)

⎞
⎟⎠

⎤
⎥⎦ d
(x), (8)

where the expectation is with respect to y*. Let AT = (Is 0),
a s × (s + 1) matrix, where s is the dimension of �, then the
Ds-optimality criterion for estimating � (a subset of the param-
eters, which characterize the mean function) is defined as

ϕ(M(
; �, �2)) = −logdet[ATM−1(
; �, �2)A]. (9)

For given values of � and �2, the locally D2-optimal design 
*,
with ϕ(·) defined as above, is such that

ϕ(M(
∗; �, �2)) = max

 ∈ 	

ϕ(M(
; �, �2)). (10)

When a prior distribution 
(�, �2) is specified for the
unknown parameters, a Bayesian Ds-optimal design maxi-
mizes the Bayesian Ds-optimality:

−
∫

logdet[ATM−1(
; �, �2)A] d
(�, �2). (11)

For notational simplicity, let fi = f(�, xi); define �i = 1 if y∗
i

> c

and ıi = 0 otherwise. Then, the log-likelihood function for case
i is

(1 − ıi) log˚

(
c − fi

�

)
− ıi

2�2
(yi − fi)

2 − ıi

2
log(2
�2), (12)

where ˚(·) is the cumulative distribution function of a stan-
dard normal random variable.

Let �(·) be the density function of a standard normal
random variable and define ki = (c − fi)/� and gi = ∂fi/∂�. After
tedious algebra and calculus, it can be seen that up to a weight
determined by the design 
, an observation i contributes

⎛
⎜⎜⎝

1
�2

[
ki�(ki) + �2(ki)

˚(ki)
+ ˚(−ki)

]
gig

T
i

1
2�3

�2(ki)

[
1 + k2

i + ki
�(ki)
˚(ki)

]
gi

1
2�3

�2(ki)

[
1 + k2

i + ki
�(ki)
˚(ki)

]
gT

i

ki

4�4
�(ki) + k3

i

4�4
�(ki) + k2

i

4�4

�2(ki)
˚(ki)

+ 1
2�4

˚(−ki)

⎞
⎟⎟⎠ (13)
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