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a b s t r a c t

In this paper, a quadratic boundary element formulation for prediction of hardness of

dentin from punch–nano-indentation test is presented. BE contact formulation is given.

The initial strain formulation and von Mises yield criteria are employed to cover plastic

deformation. The dentin is assumed to be isotropic, homogenous and elastic-perfectly plas-

tic material. The load versus displacement is obtained during loading–unloading sequence

for different yield strength and elastic modulus. Hardness and equivalent residual stresses

are plotted for different elastic modulus depending on yield strength. BE method is

shown to be an alternative accurate computational tool for simulated nano-indentation

tests.

© 2007 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The boundary element (BE) method is well established as
an accurate numerical tool, particularly well suited for lin-
ear elastic problems. Due to its high resolution of stresses on
the surface, the BE approach has been shown to be accurate
in problems involving stress concentration, fracture mechan-
ics and contact analysis. However, its extension to non-linear
problems including material and geometric non-linearity is
not widespread and is under-developed when compared to
the finite element (FE).

Nano-indentation is a powerful process for determining
the mechanical properties of materials of small dimen-
sions. However, experimental methods are not convenient
for determining yield strength and yield curves. Therefore,
it requires computational approaches. FE analysis of sphere-
nano-indentation is studied [1] with FE mesh design of 4950
4-noded axisymmetric elements. In this work, there is a large
deviation between loading and unloading curves. Moreover,
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unloading curves are almost a straight line. In their conclu-
sion, this may be due to different yield strength or constitutive
model, like perfect elastic–plastic one employed in their FE
analysis. However, it may not be one of these. It might be
the way FE formulation, employed in their analysis, handles
contact problems with plasticity.

In this paper, a BE formulation based on an initial strain
approach is presented for such applications. Isoparametric
quadratic elements are employed for the line elements and
surface cells. The objective of this paper is to present the
BE method as an alternative accurate approach for simulated
nano-indentation tests.

2. BE analytical formulations

By considering the plastic strain increments as initial strain
increments then modifying Betti’s reciprocal theorem to
include plasticity, the pseudo-boundary integral equation for
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initial strain approach can be written (by neglecting body
forces) as follows:

Cij(P)u̇i(P) = −
∫

S

Tij(P, Q)u̇i(Q) dSQ +
∫

S

Uij(P, Q)ṫi(Q) dSQ

+
∫

A

(Wkij(P, q) + W̄kij(P, q))ε̇p
ij
(q) dA(q) (1)

In this expression Uij, Tij are the second-order displacement
and traction tensors in the i direction at the field point Q or
q due to an orthogonal unit load at the variable point P or
p in the j direction. ui, ti and ε

p
i

are displacement, traction
and plastic strain respectively. The dots represent incremental
variables for time-independent plasticity. Capital letters are
used to indicate that the point concerned lies on the bound-
ary S. Capital letter A represents the solution domain. Cij is the
free-term tensor, whose components depend on the geometry,
and Wkij are the corresponding stress components. These ten-
sors can be derived from the fundamental solution to Kelvin’s
problem in two dimensions and the auxiliary tensor, W̄kij, is
given as follows:

W̄kij(p, q) = �

2�(1 − �)
ıij

1
r

∂r

∂xk
(plane strain),

W̄kij(p, q) = 0 (plane stress) (2)

The correct expressions of the plastic deformation for inte-
rior nodes, convected differentiation of the related domain
integrals are employed and at internal points the total plastic
strains can then be written as follows:

ε̇ij(p) = −
∫

S

Sε
kij(p, Q)u̇k(Q) dS(Q) +

∫
S

Dε
kij(p, Q)ṫk dS(Q)

+
∫

A

Wε
ijkh(p, q)ε̇P

kh dA(q)+
∫

A

W̄ε
ijkh(p, q) dA(q) + Fε

ij(ε̇
P
kh(p))

(3)

in which Dε
kij

, Sε
kij

and Wε
ijkh

, are the derivatives of the afore-
mentioned fundamental solutions [2]. The auxiliary tensor
(from plastic strain terms in the out-of-plane direction), Wε

ijkh

is given as:

W̄ε
ijkh(p, q) = − �

4�(1 − �)

(
1
r2

)(
ıijıkh − 2ıij

∂r

∂xk

∂r

∂xh

)
(plane strain), W̄ε

ijkh(p, q) = 0 (plane stress) (4)

The integral free-term, Fε
ij

depends on the plastic deformation
at the load point and it is given by:

Fε
ij(ε̇

P
kh(p)) = 3 − 4�

4(1 − �)
ε̇P

kh(p) − 1
8(1 − �)

ıkhε̇P
mm(p) (plane stress),

Fε
ij(ε̇

P
kh(p)) = 3 − 4�

4(1 − �)
ε̇P

kh(p) − 1 − 4�

8(1 − �)
ıkhε̇P

mm(p) (plane strain)

(5)

For a material obeying the von Mises yield criterion and linear
isotropic hardening, the plastic stain increments are given by

the following incremental elastoplastic flow rule:

ε̇
p
ij

= 3
2

(
Ṡklε̇kl

1 + H′/3�̄

)
Ṡij

(�̇eq)2
(6)

in which Ṡij and �̇eq denote the current deviatoric stress tensor
and the equivalent stress respectively. ε̇ij is the total strain
increments, �̄ the shear modulus and H′ represents the plastic
modules.

3. Numerical implementation

The detailed formulation of the BE method for the plastic anal-
ysis using isoparametric quadratic elements is well covered
in the literature and will be summarized here. Since interior
modelling is required, both boundary elements and domain
cells are necessary to perform the integrals. For the boundary
element, the geometry can be described in terms of quadratic
shape functions in a local co-ordinate axes system as follows:

xi(�) =
3∑

c=1

Nc(�)(xi)c (7)

where Nc is the quadratic shape function and � is the local
co-ordinate. Similarly, the displacement and traction vectors
can be expressed in terms of quadratic shape functions. For
the interior cells, the geometry can be defined in terms of
quadratic shape functions which are described in local co-
ordinates �1 and �2 as follows:

xi(�1, �2) =
8∑

c=1

Nc(�1, �2)(xi)c (8)

Similarly, the displacement increments can be expressed in
the domain cells. Therefore, in a discretised form, for each
body in contact, the elastoplastic boundary integral equation
in the initial strain approach (by neglecting body forces) can
be written as follows:

Ciju̇j(P) +
M∑

m=1

3∑
c=1

u̇j(Q)

∫ +1

−1

Tij(P, Q)Nc(�)J(�) d�

=
M∑

m=1

3∑
c=1

ṫj(Q)

∫ +1

−1

Uij(P, Q)Nc(�)J(�) d�

+
D∑

m=1

8∑
c=1

ε̇
p
ij
(q)

∫ +1

−1

∫ +1

−1

Wijk(p, q)Nc(�1, �2)J(�1, �2) d�1 d�2

+
D∑

m=1

8∑
c=1

ε̇
p
ij
(q)

∫ +1

−1

∫ +1

−1

W̄ijk(p, q)Nc(�1, �2)J(�1, �2) d�1 d�2

(9)

where P denotes the node where the integration is performed,
Q indicates the cth node of the mth boundary element and q
indicates the cth node of the mth domain cell.

It should be noted that the integration process is performed
separately for each domain in contact. A set of linear algebraic
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