Zeros of quasi-orthogonal ultraspherical polynomials

Kathy Driver ${ }^{\text {a }}$, Martin E. Muldoon ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag X1, Rondebosch 7701, South Africa
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada

Received 24 December 2015; received in revised form 2 June 2016; accepted 3 June 2016
Communicated by T.H. Koornwinder

Abstract

For each fixed value of λ in the range $-3 / 2<\lambda<-1 / 2$, we prove interlacing properties for the zeros of polynomials, of consecutive and non-consecutive degree, within the sequence of quasi-orthogonal order 2 ultraspherical polynomials $\left\{C_{n}^{(\lambda)}\right\}_{n=0}^{\infty}$. We investigate the manner in which interlacing occurs between the zeros of quasi-orthogonal order 2 ultraspherical polynomials $C_{n}^{(\lambda)}$ and their orthogonal counterparts $C_{m}^{(\lambda+1)}$ and derive necessary and sufficient conditions for interlacing to occur between the zeros of $C_{n}^{(\lambda)}$ and $C_{m}^{(\lambda+2)}, n, m \in \mathbb{N},-3 / 2<\lambda<-1 / 2$. In some cases we get interlacing when we include additional factors such as $x, 1-x^{2}$, and occasionally more complicated factors to the polynomials being considered. © 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Ultraspherical polynomials; Zeros; Interlacing

1. Introduction

Let $\left\{p_{n}\right\}_{n=0}^{\infty}$ be a sequence of polynomials that is orthogonal with respect to a positive Borel measure μ supported on a finite or infinite interval (a, b). It is well known from general properties of orthogonal polynomials (see, e.g., [22, Theorem 3.3.1]) that the zeros of p_{n} are real and simple

[^0]and lie in the interval of orthogonality (a, b) while, if we denote the zeros of $p_{n}, n \in \mathbb{N}$, in increasing order by $x_{1, n}<x_{2, n}<\cdots<x_{n, n}$, then [22, Theorem 3.3.2]
\[

$$
\begin{equation*}
x_{1, n}<x_{1, n-1}<x_{2, n}<x_{2, n-1}<\cdots<x_{n-1, n-1}<x_{n, n}, \tag{1}
\end{equation*}
$$

\]

a property called the interlacing of zeros. Since our discussion will include interlacing of zeros of polynomials of the same degree, and of consecutive and non-consecutive degrees, we recall the following definitions.

Definition 1.1. Let $n \in \mathbb{N}$. If $x_{1, n}<x_{2, n}<\cdots<x_{n, n}$ are the zeros of p_{n} and $y_{1, n}<y_{2, n}<$ $\cdots<y_{n, n}$ are the zeros of q_{n}, then the zeros of p_{n} and q_{n} are interlacing if

$$
\begin{equation*}
x_{1, n}<y_{1, n}<x_{2, n}<y_{2, n}<\cdots<x_{n, n}<y_{n, n} \tag{2}
\end{equation*}
$$

or if

$$
\begin{equation*}
y_{1, n}<x_{1, n}<y_{2, n}<x_{2, n}<\cdots<y_{n, n}<x_{n, n} . \tag{3}
\end{equation*}
$$

In case p_{n} is replaced by $p_{n+1},(2)$ is replaced by

$$
\begin{equation*}
x_{1, n+1}<y_{1, n}<x_{2, n+1}<y_{2, n}<\cdots<x_{n, n+1}<y_{n, n}<x_{n+1, n+1} . \tag{4}
\end{equation*}
$$

The interlacing of zeros of two polynomials whose degrees differ by two or more was introduced by Stieltjes. See [22, Section 3.3].

Definition 1.2. Let $m, n \in \mathbb{N}, m \leq n-1$. The zeros of the polynomials p_{n} and q_{m} are interlacing if there exist m open intervals, with endpoints at successive zeros of p_{n}, each of which contains exactly one zero of q_{m}.

The interlacing property of zeros of polynomials of consecutive degree in a sequence is useful in providing relatively straightforward proofs of quadrature rules; see [16].

The concept of quasi-orthogonality of order 1 was introduced by Riesz [20] in connection with his work on the moment problem. Fejér [15] considered quasi-orthogonality of order 2 and the general case was studied by Shohat [21] and many other authors including Chihara [6], Dickinson [7], Draux [8] and Maroni [17-19]. In recent papers [4,5,2], it is proved that the highest possible degree of accuracy of an n-point quadrature formula with one or two nodes fixed is achieved when the remaining nodes of the quadrature rule are the zeros of R_{n} where the sequence $\left\{R_{n}\right\}_{n=0}^{\infty}$ is quasi-orthogonal with respect to a positive Borel measure μ. The definition of quasi-orthogonality of a sequence is the following:

Definition 1.3. Let $\left\{q_{n}\right\}_{n=0}^{\infty}$ be a sequence of polynomials with degree $q_{n}=n$ for each $n \in \mathbb{N}$. For a positive integer $r<n$, the sequence $\left\{q_{n}\right\}_{n=0}^{\infty}$ is quasi-orthogonal of order r with respect to a positive Borel measure μ if

$$
\begin{equation*}
\int x^{k} q_{n}(x) d \mu(x)=0 \quad \text { for } k=0, \ldots, n-1-r \tag{5}
\end{equation*}
$$

If (5) holds for $r=0$, the sequence $\left\{q_{n}\right\}_{n=0}^{\infty}$ is orthogonal with respect to the measure μ.

Download Persian Version:
https://daneshyari.com/article/4672732

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: Kathy.Driver@uct.ac.za (K. Driver), muldoon@yorku.ca (M.E. Muldoon).

