

Available online at www.sciencedirect.com

indagationes mathematicae

Indagationes Mathematicae 27 (2016) 945-953

www.elsevier.com/locate/indag

On the commutation of generalized means on probability spaces

Paolo Leonetti^a, Janusz Matkowski^b, Salvatore Tringali^{c,*}

^a Università "Luigi Bocconi", via Sarfatti 25, 20136 Milano, Italy ^b Department of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Podgórna 50, PL-65516 Zielona Góra, Poland ^c Texas A&M University at Qatar, Education City, PO Box 23874, Doha, Qatar

Received 25 May 2015; accepted 13 June 2016

Communicated by H.W. Broer

Abstract

Let f and g be real-valued continuous injections defined on a non-empty real interval I, and let $(X, \mathcal{L}, \lambda)$ and (Y, \mathcal{M}, μ) be probability spaces in each of which there is at least one measurable set whose measure is strictly between 0 and 1.

We say that (f, g) is a (λ, μ) -switch if, for every $\mathscr{L} \otimes \mathscr{M}$ -measurable function $h : X \times Y \to \mathbf{R}$ for which $h[X \times Y]$ is contained in a compact subset of I, it holds

$$f^{-1}\left(\int_X f\left(g^{-1}\left(\int_Y g \circ h \ d\mu\right)\right) d\lambda\right) = g^{-1}\left(\int_Y g\left(f^{-1}\left(\int_X f \circ h \ d\lambda\right)\right) d\mu\right),$$

where f^{-1} is the inverse of the corestriction of f to f[I], and similarly for g^{-1} .

We prove that this notion is well-defined, by establishing that the above functional equation is wellposed (the equation can be interpreted as a permutation of generalized means and raised as a problem in

http://dx.doi.org/10.1016/j.indag.2016.06.006

^{*} Corresponding author.

E-mail addresses: leonettipaolo@gmail.com (P. Leonetti), j.matkowski@wmie.uz.zgora.pl (J. Matkowski), salvo.tringali@gmail.com (S. Tringali).

URLs: http://januszmatkowski.com/index.html (J. Matkowski), http://imsc.uni-graz.at/tringali (S. Tringali).

^{0019-3577/© 2016} Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

the theory of decision making under uncertainty), and show that (f, g) is a (λ, μ) -switch if and only if f = ag + b for some $a, b \in \mathbf{R}, a \neq 0$.

© 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Commuting mappings; Functional equations; Generalized [quasi-arithmetic] means; Permutable functions

1. Introduction

Below, we let $I \subseteq \mathbf{R}$ be a non-empty interval, which may be bounded or unbounded, and neither open nor closed. We will need the following proposition, which is proved in Section 3 (see Section 2 for a glossary of notation and terms used but not defined in this introduction):

Proposition 1. Let (S, \mathcal{C}, γ) be a probability space, and assume $w : I \to \mathbf{R}$ and $h : S \to I$ are functions such that w[I] is an interval and $w \circ h$ is γ -integrable. Then $\int_S w \circ h \, d\gamma \in w[I]$.

Given (S, \mathcal{C}, γ) and w as in Proposition 1, we denote by $\mathcal{L}^w(\gamma)$ the set of all \mathcal{C} -measurable functions $h : S \to I$ such that $w \circ h$ is γ -integrable, while we write $\mathcal{H}(\gamma)$ for the set of all \mathcal{C} -measurable functions $h : S \to I$ for which $h[S] \in I$.

Based on these premises, assume w is an injection, so that we can consider the inverse, w^{-1} , of w. It follows from Proposition 1 that the functional

$$\mathfrak{L}^{w}(\gamma) \to \mathbf{R} : h \mapsto w^{-1} \left(\int_{S} w \circ h \, d\gamma \right), \tag{1}$$

which we denote by $\mathfrak{F}_{\gamma}(w)$ and refer to as the *w*-mean relative to γ , is well-defined and its image is contained in *I*. For $h \in \mathfrak{L}^{w}(\gamma)$ we call $\mathfrak{F}_{\gamma}(w)(h)$ the *w*-mean of *h* relative to γ .

The naming comes from the observation that, if *I* is the interval]0, ∞ [and *w* is, for some real $p \neq 0$, the function $I \rightarrow \mathbf{R} : x \mapsto x^p$, then $\mathcal{L}^w(\gamma)$ is the set of all (\mathscr{C} -measurable and positive) functions $S \rightarrow I$ whose *p*th power is γ -integrable, while $\mathfrak{F}_{\gamma}(w)$ is the integral mean

$$\mathfrak{L}^{w}(\gamma) \to \mathbf{R} : h \mapsto \left(\int_{S} h^{p} d\gamma\right)^{\frac{1}{p}}$$

When *S* is a finite set, (1) gives a generalization of classical and weighted means (say, the arithmetic mean, the quadratic mean, the harmonic mean, and others) first considered, respectively, by A. Kolmogorov and M. Nagumo [15,22] and B. de Finetti and T. Kitagawa [9,14].

Indeed, our interest in Proposition 1 is mainly due to the following result, which also will be proved in Section 3.

Proposition 2. Let (U, \mathscr{A}, α) be a measure space and (V, \mathscr{B}, β) a probability space, and let w be a continuous injection $I \to \mathbf{R}$ and h a function $U \times V \to I$. The following hold:

- (i) Let $w \circ h_x$ be β -integrable for every $x \in U$, where h_x is the map $V \to \mathbf{R} : y \mapsto h(x, y)$. Then the function $\varphi : U \to \mathbf{R} : x \mapsto \mathfrak{F}_{\beta}(w)(h_x)$ is well-defined and $\varphi[U] \subseteq I$. Moreover, if h is $\mathscr{A} \otimes \mathscr{B}$ -measurable and $w \circ h$ is bounded, then φ is \mathscr{A} -measurable.
- (ii) Suppose that $h[U \times V] \in I$, and let h be $\mathscr{A} \otimes \mathscr{B}$ -measurable. Then $\varphi[U] \subseteq I$, and φ is \mathscr{A} -measurable and bounded.

Download English Version:

https://daneshyari.com/en/article/4672733

Download Persian Version:

https://daneshyari.com/article/4672733

Daneshyari.com