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Abstract

Let τ be a tracial normal state on a von Neumann algebra, L1(τ ) be the space of integrable self-adjoint
operators, and S be the space of self-adjoint measurable operators. We prove that every positive linear
operator from an ordered Banach space to S can be factorized through L1(τ ).
c⃝ 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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In what follows, τ is a faithful normal tracial state on a (finite) von Neumann algebra M of
operators in a Hilbert space H . We will denote by Mpr the orthomodular lattice of all orthogonal
projections in M and by M∗ the predual of M .

Recall some definitions and facts of the non-commutative integration (see, e.g., [5, Ch. IX,
Section 2]) adapted to the case of finite trace and self-adjoint operators.

A self-adjoint operator x in H with the spectral resolution

x =


+∞

−∞

λ dex
λ

is said to be affiliated with M if ex
λ ∈ Mpr for all λ ∈ R. We will denote by S and S+ the set of

all self-adjoint operators affiliated with M and the subset of positive operators, respectively. For
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any pair x, y ∈ S the sum x + y and the product yxy are considered in the strong sense (that is,
as the closure of the algebraic sum and product, respectively). The formula

τ(x) =


+∞

0
λ dτ(ex

λ)

extends τ to S+ and for any pair x, y ∈ S+ it holds τ(y
1
2 xy

1
2 ) = τ(x

1
2 yx

1
2 ). The collection of

the sets

U (ε, δ) = {x ∈ S: ∃p ∈ Mpr such that ∥pxp∥ ≤ ε and τ(p⊥) ≤ δ} (ε, δ > 0)

forms a basis of neighborhoods of zero in the topology of convergence in measure which turns S
to be a complete metrizable topological vector space. Note that a compatible F-norm N on S can
be determined by

N (x) = τ(|x |(1 + |x |)−1).

An operator x ∈ S is said to be τ -integrable if
+∞

−∞

|λ| dτ(ex
λ) < ∞.

The space of all such operators is endowed with the norm defined by

∥x∥1 =


+∞

−∞

|λ| dτ(ex
λ).

In this way we obtain a Banach space over reals, which we will denote by L1(τ ).
The crucial point of our paper is Lemma 2. That was stated without proof in [6]. Its proof is

essentially the same as the first part of the proof of [7, Lemma VI.5.5]. Nevertheless, we include
the proof for the sake of completeness.

Lemma 1 ([7, Lemma VI.5.4 (Ky Fan)]). Let K be a compact convex subset of a topological
vector space and Γ be a convex set of lower semicontinuous convex mappings Φ : K → (−∞,

+∞]. Suppose that for each Φ ∈ Γ there exists an ξ ∈ K such that Φ(ξ) ≤ 0. Then, there exists
an element ξ0 ∈ K such that Φ(ξ0) ≤ 0 for each Φ ∈ Γ .

Lemma 2 ([6, Lemma 9]). Let C be a convex and bounded subset of S+. Then for any ε > 0
there exists p ∈ Mpr such that supx∈C τ(pxp) < ∞ and τ(p⊥) < ε.

Proof. Take ε > 0 and let 0 < δ < 1
4ε. Since C is bounded, we can find rδ > 0 such that

sup
x∈C

N (r−1
δ x) < δ.

Set

K = {a ∈ M : 0 ≤ a ≤ 1, τ (a) ≥ 1 − 2δ}.

It is easy to see that K is convex and σ(M, M∗)-compact. For every x ∈ C define a functional
Φx : K → (−∞, +∞] by

Φx (a) = τ(x
1
2 ax

1
2 ) − rδ (=τ(a

1
2 xa

1
2 ) − rδ).
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