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Abstract

Let t be a tracial normal state on a von Neumann algebra, L! () be the space of integrable self-adjoint
operators, and S be the space of self-adjoint measurable operators. We prove that every positive linear
operator from an ordered Banach space to S can be factorized through L.
© 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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In what follows, t is a faithful normal tracial state on a (finite) von Neumann algebra M of
operators in a Hilbert space H. We will denote by MP" the orthomodular lattice of all orthogonal
projections in M and by M, the predual of M.

Recall some definitions and facts of the non-commutative integration (see, e.g., [5, Ch. IX,
Section 2]) adapted to the case of finite trace and self-adjoint operators.

A self-adjoint operator x in H with the spectral resolution

+00
x = / rde;
—00

is said to be affiliated with M if ¢ € MP" for all A € R. We will denote by S and S* the set of
all self-adjoint operators affiliated with M and the subset of positive operators, respectively. For
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any pair x, y € S the sum x 4 y and the product yxy are considered in the strong sense (that is,
as the closure of the algebraic sum and product, respectively). The formula

+00
T(x) = / rdt(ey)
0

extends T to ST and for any pair x, y € ST it holds t(y%xy%) = r(x%yx%). The collection of
the sets

U(e,8) = {x € S:3p € MP such that ||pxp| < e and t(p) <8} (£,8 > 0)

forms a basis of neighborhoods of zero in the topology of convergence in measure which turns S
to be a complete metrizable topological vector space. Note that a compatible F-norm N on § can
be determined by

N(x) = z(jx|(1 + |xh7h.

An operator x € S is said to be t-integrable if

+00
/ [Aldt(ey) < o0.

—00

The space of all such operators is endowed with the norm defined by

+00
llx 1l =f Al dT ().

—00

In this way we obtain a Banach space over reals, which we will denote by L' (7).

The crucial point of our paper is Lemma 2. That was stated without proof in [6]. Its proof is
essentially the same as the first part of the proof of [7, Lemma V1.5.5]. Nevertheless, we include
the proof for the sake of completeness.

Lemma 1 ([7, Lemma VI.5.4 (Ky Fan)]). Let K be a compact convex subset of a topological
vector space and I' be a convex set of lower semicontinuous convex mappings ® : K — (—o0,
~+00]. Suppose that for each @ € I there exists an & € K such that ®(§) < 0. Then, there exists
an element &y € K such that ®(&y) < 0foreach ® € I'.

Lemma 2 ([6, Lemma 9]). Let C be a convex and bounded subset of S*. Then for any ¢ > 0
there exists p € MP" such that sup,.c T(pxp) < oo and (ph) <e.

Proof. Take ¢ > Oandlet0 < § < %s. Since C is bounded, we can find rs > 0 such that

sup N(rs_lx) < 4.

xeC

Set
K={aeM:0<a<l1,t(a) >1-26}.

It is easy to see that K is convex and o (M, M, )-compact. For every x € C define a functional
&, : K — (—o0, +00] by

D (a) = t(x%ax%) —rs (:r(a%xa%) —rs).
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