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Abstract

It is well-known that there are infinitely many irregular primes. We prove a quantitative version of
this statement, namely the number of such primes p ≤ x is at least (1 + o(1)) log log x/ log log log x as
x → ∞. We show that the same conclusion holds for the irregular primes corresponding to the Euler
numbers. Under some conditional results from Diophantine approximation, the above lower bounds can be
improved to ≫ log x/(log log x)2.
c⃝ 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

The Bernoulli numbers {Bm}m≥0 are defined via their exponential generating function

t

et − 1
=


m≥0

Bm
tm

m!
. (1)
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The first few values are

B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30,

B5 = 0, B6 = 1/42.

Evaluating relation (1) at −t and subtracting the resulting formula from (1), one gets that Bm = 0
for all odd m ≥ 3. There are several explicit formulas for computing Bm as well as the recur-
rences among them such as

m−1
k=0

m

k


Bk = 0 for all m ≥ 2,

which can be used to compute Bm−1 in terms of B j for j ∈ {0, . . . , m − 2}.
A prime p > 2 is called regular if it divides the class number of the cyclotomic field Q(ζp),

where ζp = e2π i/p is a nontrivial pth root of unity. In 1850, Kummer [8] showed that p is regular
if and only if it does not divide the numerator of any of the numbers

B2, B4, . . . , Bp−3.

The first few regular primes are

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, . . . .

This is sequence A007703 in [17]. In 1964, Siegel [16] conjectured that the regular primes have
relative density 1/

√
e as a subset of all the primes. However, it is not even known that there are

infinitely many regular primes. An odd prime which is not regular is called irregular. The first
few irregular primes are

37, 59, 67, 101, 103, 131, 149, . . . . (2)

This is sequence A000928 in [17]. Unlike with the regular primes, it is known that there are
infinitely many irregular primes. The first proof of this fact was given in 1915 by Jensen in [7],
who in fact showed that there are infinitely many irregular primes congruent to 3 modulo 4.
Almost 40 years later, in 1954, Carlitz [1], gave a simple proof of the weaker result that there are
infinitely many irregular primes. Jensen’s result was extended to the existence of irregular primes
in other congruence classes by Montgomery [14] and Metsänkylä [13].

Let

I B = {p : p irregular}

and let I B(x) = I B ∩ [1, x]. Our main result is the following.

Theorem 1. The inequality

#I B(x) ≥ (1 + o(1))
log log x

log log log x

holds as x → ∞.

Let {Em}m≥0 be the sequence of Euler numbers whose exponential generating function is
given by

sec t =


m≥0

Em
tm

m!
.
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