Random congruences

Jörg Brüdern ${ }^{\text {a,* }}$, Rainer Dietmann ${ }^{\text {b }}$
${ }^{\text {a }}$ Mathematisches Institut, Bunsenstrasse 3-5, 37073 Göttingen, Germany
${ }^{\mathrm{b}}$ Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

Abstract

The size of the smallest primitive solution of a random congruence is determined. (C) 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Congruences in general position

1. Introduction

The distribution of small solutions of homogeneous congruences is a theme of some relevance in the theory of numbers, mainly because of an intimate connection with incomplete exponential sums (see for example [1,4,5,7,8]). Here we investigate this theme on average to study the question for a form in general position. In preparation for the announcement of our results, fix a degree $d \in \mathbb{N}$, and write a form $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{S}\right]$ of degree d as

$$
\begin{equation*}
F=\sum_{\mathbf{j} \in \mathscr{J}} a_{\mathbf{j}} X_{j_{1}} \cdots X_{j_{d}}, \tag{1}
\end{equation*}
$$

where $\mathbf{j}=\left(j_{1}, \ldots, j_{d}\right)$ runs over the set

$$
\mathscr{J}=\left\{\mathbf{j} \in \mathbb{N}^{d}: j_{1} \leq \cdots \leq j_{d} \leq s\right\} .
$$

[^0]In the sequel we will often signal the dependence of F on a in (1) by writing $F=F_{\mathbf{a}}$. In this notation, whenever q is a natural number and $1 \leq B<q$, let

$$
\mathscr{X}(q, B)=\left\{\mathbf{x} \in \mathbb{Z}^{s}:\left|x_{j}\right| \leq B,\left(x_{j}, q\right)=1 \quad(1 \leq j \leq s)\right\}
$$

and

$$
N_{\mathbf{a}}(q, B)=\#\left\{\mathbf{x} \in \mathscr{X}(q, B): F_{\mathbf{a}}(\mathbf{x}) \equiv 0 \bmod q\right\}
$$

Note that $\mathbf{0} \notin \mathscr{X}(q, B)$. Thus, any solution of $F_{\mathbf{a}}(\mathbf{x}) \equiv 0 \bmod q$ counted by $N_{\mathbf{a}}(q, B)$ is nontrivial. The problem that we wish to describe is certainly simplest when q is a prime p. A naïve statistical heuristics would suggest that $N_{\mathbf{a}}(p, B)$ should roughly be of size $(2 B)^{s} / p$ provided only that this last quantity is large. This prediction is certainly false for some forms, as we shall show momentarily by means of a simple example. However, in a suitable mean square sense, one can show that the proportion of forms where $N_{\mathbf{a}}(p, B)-(2 B)^{s} / p$ is small tends to 1 as p grows. Such a result can be substantiated for a larger class of moduli, and therefore, we now return to the discussion of general $q \in \mathbb{N}$, and move on to describe the averaging process over sets of forms. Informally speaking, we allow the coefficients $a_{\mathbf{j}}$ to range over a complete set of residues, modulo q, or put them to 0 . The "diagonal" coefficients $a_{(j, j, \ldots, j)}$ will always range over $\{1,2, \ldots, q\}$. More precisely, associate with each $\mathbf{j} \in \mathscr{J}$ a set $\mathscr{A}_{\mathbf{j}} \subset\{1, \ldots, q\}$. We refer to a family $\mathfrak{A}=\left(\mathscr{A}_{\mathbf{j}}\right)_{\mathbf{j} \in \mathscr{J}}$ of such sets as admissible if for each $\mathbf{j} \in \mathscr{J}$ the set $\mathscr{A}_{\mathbf{j}}$ is one of the two sets $\{1, \ldots, q\}$ or $\{q\}$, and for all $\mathbf{j}=(j, j, \ldots, j)$ with $1 \leq j \leq s$ one has $\mathscr{A}_{\mathbf{j}}=\{1, \ldots, q\}$. By slight abuse of notation, we shall write $\mathbf{a} \in \mathfrak{A}$ as a shorthand for the assertion that $a_{\mathbf{j}} \in \mathscr{A}_{j}$ holds for all $\mathbf{j} \in \mathscr{J}$. With this convention understood, we also write

$$
\# \mathfrak{A}=\sum_{\mathbf{a} \in \mathfrak{A}} 1 .
$$

Note that whenever \mathfrak{A} is admissible, and one has $\mathscr{A}_{\mathbf{j}}=\{1, \ldots, q\}$ for exactly J of the indices $\mathbf{j} \in \mathscr{J}$, then $\# \mathfrak{A}=q^{J}$.

Our primary concern is an estimate for the variance

$$
\begin{equation*}
V=\sum_{\mathbf{a} \in \mathfrak{A}}\left(N_{\mathbf{a}}(q, B)-\frac{\# \mathscr{X}(q, B)}{q}\right)^{2} . \tag{2}
\end{equation*}
$$

This expression measures the difference of $N_{\mathbf{a}}(q, B)$ to its expected size in mean over the family \mathfrak{A}. Note that the case where all $\mathscr{A}_{\mathbf{j}}$ are a complete set of residues modulo q is admissible, so that we may average over all forms of fixed degree. Also, we may take $\mathscr{A}_{\mathbf{j}}=\{q\}$ for all \mathbf{j} except when all coordinates of \mathbf{j} are equal. This example corresponds to the set of all diagonal forms.

In the statement of our results, it is convenient, for given $0<\delta \leq 1$, to define a positive integer q as δ-rough if q has no prime factor smaller than q^{δ}.

Theorem. Let $s \geq 3$ and $0<\delta \leq 1$. There exists a number $C=C(d, s, \delta)$ with the property that whenever \mathfrak{A} is admissible and q is δ-rough with $q^{1 / s} \leq B<q$, then

$$
\begin{equation*}
V \leq \frac{C \# \mathfrak{A}}{q^{2}}\left(B^{s} q+B^{2 s} q^{\delta(2-s)}\right) \tag{3}
\end{equation*}
$$

https://daneshyari.com/en/article/4672791

Download Persian Version:
https://daneshyari.com/article/4672791

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: Joerg.Bruedern@mathematik.uni-goettingen.de (J. Brüdern), Rainer.Dietmann@rhul.ac.uk (R. Dietmann).

