Irreducibility of Laguerre Polynomial $L_{n}^{(-1-n-r)}(x)$
 Saranya G. Nair*, T.N. Shorey
 Department of Mathematics, IIT Bombay, Powai, Mumbai 400076, India

Received 10 April 2015; accepted 14 April 2015
Communicated by R. Tijdeman

Abstract

We consider the algebraic properties of Generalized Laguerre Polynomials for negative integral values given by $L_{n}^{(-1-n-r)}(x)=\sum_{j=0}^{n}\binom{n-j+r}{n-j} \frac{x^{j}}{j!}$. For different values of r, this family gives polynomials which are of great interest. Improving on the earlier results of Hajir and Sell, we prove that $L_{n}^{(-1-n-r)}$ is irreducible and compute its Galois group for $r \leq 22$. Also we prove that $L_{n}^{(-1-n-r)}$ is irreducible and its Galois group contains A_{n} whenever $n>\frac{r}{1.63} e^{1.00008 r}$. © 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Galois group; Irreducibility; Laguerre Polynomials; Primes

1. Introduction

For a real number α and an integer $n \geq 1$, the Generalized Laguerre Polynomials (GLP) are a family of polynomials defined by

$$
L_{n}^{(\alpha)}(x)=(-1)^{n} \sum_{j=0}^{n}\binom{n+\alpha}{n-j} \frac{(-x)^{j}}{j!} .
$$

The Generalized Laguerre Polynomials have been extensively studied in various branches of analysis and mathematical physics where they play an important role. The algebraic properties

[^0]of GLP were first studied by Schur $[10,11]$ where he established the irreducibility of $L_{n}^{(\alpha)}(x)$ for $\alpha \in\{0,1,-n-1\}$, gave a formula for the discriminant $\Delta_{n}^{(\alpha)}$ of $\mathcal{L}_{n}^{(\alpha)}(x)=n!L_{n}^{(\alpha)}(x)$ by
$$
\Delta_{n}^{(\alpha)}=\prod_{j=1}^{n} j^{j}(\alpha+j)^{j-1}
$$
and calculated their associated Galois groups. For an account of results obtained on GLP, we refer to Hajir [6] and Filaseta [1,4].

We shall restrict α to a negative integer in this paper. For integer $r \geq 0$, we consider

$$
\begin{aligned}
L_{n}^{\langle r\rangle}(x) & :=L_{n}^{(-1-n-r)}(x) \\
& =(-1)^{n} \sum_{j=0}^{n}\binom{-r-1}{n-j} \frac{(-x)^{j}}{j!}=\sum_{j=0}^{n}\binom{n-j+r}{n-j} \frac{x^{j}}{j!}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{L}_{n}^{\langle r\rangle}(x) & :=n!L_{n}^{(-1-n-r)}(x) \\
& =\sum_{j=0}^{n}\binom{n}{j}(r+1)(r+2) \cdots(r+n-j) x^{j} .
\end{aligned}
$$

By a factor of $L_{n}^{\langle r\rangle}(x)$, we always mean its factor over \mathbb{Q}. We denote

$$
\begin{equation*}
\Delta_{n}^{\langle r\rangle}:=\Delta_{n}^{(-1-n-r)}=\prod_{j=1}^{n} j^{j}(-1-n-r+j)^{j-1} \tag{1}
\end{equation*}
$$

We observe that $\Delta_{n}^{\langle r\rangle}$ is an integer since r is an integer. We denote by $G_{n}(r)$ the Galois group of $\mathcal{L}_{n}^{\langle r\rangle}(x)$ over \mathbb{Q}. We observe that $G_{1}(r)=S_{1}=A_{1}$ where S_{n} denotes the permutation group and A_{n} the alternating group on n symbols. Thus we shall always write $G_{1}(r)=S_{1}$. Schur $[10,11]$ proved that $L_{n}^{\langle 0\rangle}(x)$ is irreducible and has Galois group A_{n} or S_{n} according as n is divisible by 4 or not, respectively. We observe that $L_{n}^{\langle 0\rangle}(x)$ is the truncated exponential series. Coleman [2] gave a different proof for this result. In fact the method given by Coleman [2], further developed and refined by Filaseta [4], turns out to be very powerful for studying irreducibility of GLP. The case $r=n$ gives Bessel polynomials and Filaseta and Trifonov [5] proved their irreducibility for all n. It has been proved by Hajir [6] and Sell [9] that $L_{n}^{\langle r\rangle}(x)$ is irreducible and its Galois group contains A_{n} when $r=1$ or $r=2$, respectively. More precisely, Hajir [6] proved that for $n \geq 14$,

$$
G_{n}(1)= \begin{cases}A_{n} & \text { if } n \equiv 0(\bmod 4) \\ S_{n} & \text { otherwise }\end{cases}
$$

and Sell [9] proved that for $n \geq 14$,

$$
G_{n}(2)= \begin{cases}A_{n} & \text { if } n=4 k(k+1) \text { for } k \text { a positive integer } \\ S_{n} & \text { otherwise }\end{cases}
$$

For $n<14$, we check that $G_{n}(1)=G_{n}(2)=S_{n}$ unless $(n, r)=\{(5,1),(9,1),(13,1),(8,2)\}$ in which case $G_{n}(r)=A_{n}$. Further Hajir [6] showed that for $3 \leq r \leq 8$ and $n \geq 1, L_{n}^{\langle r\rangle}(x)$ is irreducible and $G_{n}(r)$ contains A_{n}. Also he proved that for $n>B(r)$ and $r \geq 9, L_{n}^{\langle r\rangle}(x)$ is

https://daneshyari.com/en/article/4672801

Download Persian Version:

https://daneshyari.com/article/4672801

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: saranya@math.iitb.ac.in (S.G. Nair), shorey @math.iitb.ac.in (T.N. Shorey).

