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Abstract

In this paper, we employ the Mond–Pečarić method to establish some reverses of the operator Bellman
inequality under certain conditions. In particular, we show
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where A j (1 ≤ j ≤ n) are self-adjoint contraction operators with 0 ≤ m IH ≤ A j ≤ M IH , Φ j
are unital positive linear maps on B(H ), ω j ∈ R+ (1 ≤ j ≤ n) such that
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M−m and 0 < p < 1. We also present some

refinements of the operator Bellman inequality.
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1. Introduction

Let B(H ) denote the C∗-algebra of all bounded linear operators on a complex Hilbert space
H with the identity IH . In the case when dim H = n, we identify B(H ) with the matrix
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algebra Mn(C) of all n × n matrices with entries in the complex field. An operator A ∈ B(H )

is called positive if ⟨Ax, x⟩ ≥ 0 for all x ∈ H and in this case we write A ≥ 0. We write
A > 0 if A is a positive invertible operator. The set of all positive invertible operators is denoted
by B(H )+. For self-adjoint operators A, B ∈ B(H ), we say A ≤ B if B − A ≥ 0. Also, an
operator A ∈ B(H ) is said to be contraction, if A∗ A ≤ IH . The Gelfand map f (t) → f (A)

is an isometrical ∗-isomorphism between the C∗-algebra C(sp(A)) of continuous functions on
the spectrum sp(A) of a self-adjoint operator A and the C∗-algebra generated by A and IH . If
f, g ∈ C(sp(A)), then f (t) ≥ g(t) (t ∈ sp(A)) implies that f (A) ≥ g(A).

Let f be a continuous real valued function defined on an interval J . It is called operator
monotone if A ≤ B implies f (A) ≤ f (B) for all self-adjoint operators A, B ∈ B(H ) with
spectra in J ; see [4] and references therein for some recent results. It is said to be operator
concave if λ f (A)+(1−λ) f (B) ≤ f (λA+(1−λ)B) for all self-adjoint operators A, B ∈ B(H )

with spectra in J and all λ ∈ [0, 1]. Every nonnegative continuous function f is operator
monotone on [0, +∞) if and only if f is operator concave on [0, +∞); see [5, Theorem 8.1].
A map Φ : B(H ) −→ B(K ) is called positive if Φ(A) ≥ 0 whenever A ≥ 0, where K is a
complex Hilbert space and is said to be unital if Φ(IH ) = IK . We denote by PN [B(H ), B(K )]

the set of all unital positive linear maps Φ : B(H ) → B(K ).
The axiomatic theory for operator means of positive invertible operators have been developed

by Kubo and Ando [7]. A binary operation σ on B(H )+ is called a connection, if the following
conditions are satisfied:

(i) A ≤ C and B ≤ D imply Aσ B ≤ Cσ D;
(ii) An ↓ A and Bn ↓ B imply Anσ Bn ↓ Aσ B, where An ↓ A means that A1 ≥ A2 ≥ · · · and

An → A as n → ∞ in the strong operator topology;
(iii) T ∗(Aσ B)T ≤ (T ∗ AT )σ (T ∗ BT ) (T ∈ B(H )).

There exists an affine order isomorphism between the class of connections and the class of
positive operator monotone functions f defined on (0, ∞) via f (t)IH = IH σ f (t IH ) (t > 0).
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function f is called the representing function of σ f . A connection σ f is a mean if it is normalized,
i.e. IH σ f IH = IH . The function f∇µ(t) = (1 − µ) + µt and f♯µ(t) = tµ on (0, ∞) for
µ ∈ (0, 1) give the operator weighted arithmetic mean A∇µ B = (1−µ)A+µB and the operator

weighted geometric mean A♯µ B = A
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2 , respectively. The case µ = 1/2, the

operator weighted geometric mean gives rise to the so-called geometric mean A♯B.
Bellman [2] proved that if p is a positive integer and a, b, a j , b j (1 ≤ j ≤ n) are positive real

numbers such that
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A multiplicative analogue of this inequality is due to J. Aczél; see [1] and its operator version
in [10]. In 1956, Aczél [1] proved that if a j , b j (1 ≤ j ≤ n) are positive real numbers such that
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