Some operator Bellman type inequalities

Mojtaba Bakherad ${ }^{\text {a,* }}$, Ali Morassaei ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran
${ }^{\mathrm{b}}$ Department of Mathematics, Faculty of Sciences, University of Zanjan, University Blvd., Zanjan 45371-38791, Iran

Received 17 February 2015; received in revised form 13 April 2015; accepted 29 April 2015
Communicated by H. Woerdeman

Abstract

In this paper, we employ the Mond-Pečarić method to establish some reverses of the operator Bellman inequality under certain conditions. In particular, we show $$
\delta I_{\mathscr{H}}+\sum_{j=1}^{n} \omega_{j} \Phi_{j}\left(\left(I_{\mathscr{H}}-A_{j}\right)^{p}\right) \geq\left(\sum_{j=1}^{n} \omega_{j} \Phi_{j}\left(I_{\mathscr{H}}-A_{j}\right)\right)^{p},
$$

where $A_{j}(1 \leq j \leq n)$ are self-adjoint contraction operators with $0 \leq m I_{\mathscr{H}} \leq A_{j} \leq M I_{\mathscr{H}}, \Phi_{j}$ are unital positive linear maps on $\mathbb{B}(\mathscr{H}), \omega_{j} \in \mathbb{R}_{+}(1 \leq j \leq n)$ such that $\sum_{j=1}^{n} \omega_{j}=1, \delta=$ $(1-p)\left(\frac{1}{p} \frac{(1-m)^{p}-(1-M)^{p}}{M-m}\right)^{\frac{p}{p-1}}+\frac{(1-M)(1-m)^{p}-(1-m)(1-M)^{p}}{M-m}$ and $0<p<1$. We also present some refinements of the operator Bellman inequality.
(c) 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Bellman inequality; Operator mean; The Mond-Pečarić method; Positive linear map

1. Introduction

Let $\mathbb{B}(\mathscr{H})$ denote the C^{*}-algebra of all bounded linear operators on a complex Hilbert space \mathscr{H} with the identity $I_{\mathscr{H}}$. In the case when $\operatorname{dim} \mathscr{H}=n$, we identify $\mathbb{B}(\mathscr{H})$ with the matrix

[^0]algebra $\mathcal{M}_{n}(\mathbb{C})$ of all $n \times n$ matrices with entries in the complex field. An operator $A \in \mathbb{B}(\mathscr{H})$ is called positive if $\langle A x, x\rangle \geq 0$ for all $x \in \mathscr{H}$ and in this case we write $A \geq 0$. We write $A>0$ if A is a positive invertible operator. The set of all positive invertible operators is denoted by $\mathbb{B}(\mathscr{H})_{+}$. For self-adjoint operators $A, B \in \mathbb{B}(\mathscr{H})$, we say $A \leq B$ if $B-A \geq 0$. Also, an operator $A \in \mathbb{B}(\mathscr{H})$ is said to be contraction, if $A^{*} A \leq I_{\mathscr{H}}$. The Gelfand map $f(t) \mapsto f(A)$ is an isometrical $*$-isomorphism between the C^{*}-algebra $C(\operatorname{sp}(A))$ of continuous functions on the spectrum $\operatorname{sp}(A)$ of a self-adjoint operator A and the C^{*}-algebra generated by A and $I_{\mathscr{H}}$. If $f, g \in C(\operatorname{sp}(A))$, then $f(t) \geq g(t)(t \in \operatorname{sp}(A))$ implies that $f(A) \geq g(A)$.

Let f be a continuous real valued function defined on an interval J. It is called operator monotone if $A \leq B$ implies $f(A) \leq f(B)$ for all self-adjoint operators $A, B \in \mathbb{B}(\mathscr{H})$ with spectra in J; see [4] and references therein for some recent results. It is said to be operator concave if $\lambda f(A)+(1-\lambda) f(B) \leq f(\lambda A+(1-\lambda) B)$ for all self-adjoint operators $A, B \in \mathbb{B}(\mathscr{H})$ with spectra in J and all $\lambda \in[0,1]$. Every nonnegative continuous function f is operator monotone on $[0,+\infty)$ if and only if f is operator concave on [$0,+\infty$); see [5, Theorem 8.1]. A map $\Phi: \mathbb{B}(\mathscr{H}) \longrightarrow \mathbb{B}(\mathscr{K})$ is called positive if $\Phi(A) \geq 0$ whenever $A \geq 0$, where \mathscr{K} is a complex Hilbert space and is said to be unital if $\Phi\left(I_{\mathscr{H}}\right)=I_{\mathscr{K}}$. We denote by $\mathbf{P}_{N}[\mathbb{B}(\mathscr{H}), \mathbb{B}(\mathscr{K})]$ the set of all unital positive linear maps $\Phi: \mathbb{B}(\mathscr{H}) \rightarrow \mathbb{B}(\mathscr{K})$.

The axiomatic theory for operator means of positive invertible operators have been developed by Kubo and Ando [7]. A binary operation σ on $\mathbb{B}(\mathscr{H})_{+}$is called a connection, if the following conditions are satisfied:
(i) $A \leq C$ and $B \leq D$ imply $A \sigma B \leq C \sigma D$;
(ii) $A_{n} \downarrow A$ and $B_{n} \downarrow B$ imply $A_{n} \sigma B_{n} \downarrow A \sigma B$, where $A_{n} \downarrow A$ means that $A_{1} \geq A_{2} \geq \cdots$ and $A_{n} \rightarrow A$ as $n \rightarrow \infty$ in the strong operator topology;
(iii) $T^{*}(A \sigma B) T \leq\left(T^{*} A T\right) \sigma\left(T^{*} B T\right)(T \in \mathbb{B}(\mathscr{H}))$.

There exists an affine order isomorphism between the class of connections and the class of positive operator monotone functions f defined on $(0, \infty)$ via $f(t) I_{\mathscr{H}}=I_{\mathscr{H}} \sigma_{f}\left(t I_{\mathscr{H}}\right)(t>0)$. In addition, $A \sigma_{f} B=A^{\frac{1}{2}} f\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}$ for all $A, B \in \mathbb{B}(\mathscr{H})_{+}$. The operator monotone function f is called the representing function of σ_{f}. A connection σ_{f} is a mean if it is normalized, i.e. $I_{\mathscr{H}} \sigma_{f} I_{\mathscr{H}}=I_{\mathscr{H}}$. The function $f_{\nabla_{\mu}}(t)=(1-\mu)+\mu t$ and $f_{\sharp_{\mu}}(t)=t^{\mu}$ on $(0, \infty)$ for $\mu \in(0,1)$ give the operator weighted arithmetic mean $A \nabla_{\mu} B=(1-\mu) A+\mu B$ and the operator weighted geometric mean $A \not \sharp_{\mu} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\mu} A^{\frac{1}{2}}$, respectively. The case $\mu=1 / 2$, the operator weighted geometric mean gives rise to the so-called geometric mean $A \sharp B$.

Bellman [2] proved that if p is a positive integer and $a, b, a_{j}, b_{j}(1 \leq j \leq n)$ are positive real numbers such that $\sum_{j=1}^{n} a_{j}^{p} \leq a^{p}$ and $\sum_{j=1}^{n} b_{j}^{p} \leq b^{p}$, then

$$
\left(a^{p}-\sum_{j=1}^{n} a_{j}^{p}\right)^{1 / p}+\left(b^{p}-\sum_{j=1}^{n} b_{j}^{p}\right)^{1 / p} \leq\left((a+b)^{p}-\sum_{j=1}^{n}\left(a_{j}+b_{j}\right)^{p}\right)^{1 / p} .
$$

A multiplicative analogue of this inequality is due to J. Aczél; see [1] and its operator version in [10]. In 1956, Aczél [1] proved that if $a_{j}, b_{j}(1 \leq j \leq n)$ are positive real numbers such that $a_{1}^{2}-\sum_{j=2}^{n} a_{j}^{2}>0$ or $b_{1}^{2}-\sum_{j=2}^{n} b_{j}^{2}>0$, then

$$
\left(a_{1}^{2}-\sum_{j=2}^{n} a_{j}^{2}\right)\left(b_{1}^{2}-\sum_{j=2}^{n} b_{j}^{2}\right) \leq\left(a_{1} b_{1}-\sum_{j=2}^{n} a_{j} b_{j}\right)^{2}
$$

https://daneshyari.com/en/article/4672804

Download Persian Version:
https://daneshyari.com/article/4672804

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mojtaba.bakherad@yahoo.com, bakherad@ member.ams.org (M. Bakherad), morassaei@znu.ac.ir, morassaei@chmail.ir (A. Morassaei).

