Real quadratic double sums

Jeremy Lovejoy ${ }^{\mathrm{a}, *}$, Robert Osburn ${ }^{\mathrm{b}, \mathrm{c}}$
${ }^{\text {a }}$ CNRS, LIAFA, Université Denis Diderot - Paris 7, Case 7014, 75205 Paris Cedex 13, France
${ }^{\mathrm{b}}$ School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
${ }^{\text {c }}$ IHÉS, Le Bois-Marie, 35, route de Chartres, F-91440 Bures-sur-Yvette, France
Received 5 February 2015; received in revised form 9 June 2015; accepted 16 June 2015
Communicated by T.H. Koornwinder

Abstract

In 1988, Andrews, Dyson and Hickerson initiated the study of q-hypergeometric series whose coefficients are dictated by the arithmetic in real quadratic fields. In this paper, we provide a dozen q hypergeometric double sums which are generating functions for the number of ideals of a given norm in rings of integers of real quadratic fields and prove some related identities. (C) 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Bailey pairs; Real quadratic fields; q-series

1. Introduction

In 1988, Andrews, Dyson and Hickerson [2] initiated the study of q-hypergeometric series whose coefficients are dictated by the arithmetic in real quadratic fields. They considered a q-series from Ramanujan's lost notebook,

$$
\begin{equation*}
\sigma(q):=\sum_{n \geq 0} \frac{q^{\binom{n+1}{2}}}{(-q)_{n}}, \tag{1.1}
\end{equation*}
$$

[^0]and proved the Hecke-type identity,
\[

$$
\begin{equation*}
\sigma(q)=\sum_{\substack{n \geq 0 \\-n \leq j \leq n}}(-1)^{n+j} q^{n(3 n+1) / 2-j^{2}}\left(1-q^{2 n+1}\right) . \tag{1.2}
\end{equation*}
$$

\]

Here and throughout we assume that $|q|<1$ and use the standard q-hypergeometric notation,

$$
(a)_{n}=(a ; q)_{n}=\prod_{k=1}^{n}\left(1-a q^{k-1}\right)
$$

valid for $n \in \mathbb{N} \cup\{\infty\}$. They then used identity (1.2) to relate the coefficients of $\sigma(q)$ to the ring of integers of the real quadratic field $\mathbb{Q}(\sqrt{6})$. As a consequence, they found that these coefficients satisfy an "almost" exact formula, are lacunary and yet, surprisingly, assume all integer values infinitely often.

Other rare and intriguing examples of q-series related to real quadratic fields (predicted to exist by Dyson [6]) have been discovered over the years (see [3,5,7,8], for example). The key in each of these cases is the use of Bailey pairs to prove a Hecke-type identity resembling (1.2). We recall that a Bailey pair relative to a is a pair of sequences $\left(\alpha_{n}, \beta_{n}\right)_{n \geq 0}$ satisfying

$$
\begin{equation*}
\beta_{n}=\sum_{k=0}^{n} \frac{\alpha_{k}}{(q)_{n-k}(a q)_{n+k}} . \tag{1.3}
\end{equation*}
$$

For example, Bringmann and Kane [3] discovered the following two Bailey pairs. First, $\left(a_{n}, b_{n}\right)$ is a Bailey pair relative to 1 , where

$$
\begin{align*}
& a_{2 n}=\left(1-q^{4 n}\right) q^{2 n^{2}-2 n} \sum_{j=-n}^{n-1} q^{-2 j^{2}-2 j}, \tag{1.4}\\
& a_{2 n+1}=-\left(1-q^{4 n+2}\right) q^{2 n^{2}} \sum_{j=-n}^{n} q^{-2 j^{2}}, \tag{1.5}
\end{align*}
$$

and

$$
\begin{equation*}
b_{n}=\frac{(-1)^{n}\left(q ; q^{2}\right)_{n-1}}{(q)_{2 n-1}} \chi(n \neq 0) \tag{1.6}
\end{equation*}
$$

Second, $\left(\alpha_{n}, \beta_{n}\right)$ is a Bailey pair relative to q, where

$$
\begin{align*}
& \alpha_{2 n}=\frac{1}{1-q}\left(q^{2 n^{2}+2 n} \sum_{j=-n}^{n-1} q^{-2 j^{2}-2 j}+q^{2 n^{2}} \sum_{j=-n}^{n} q^{-2 j^{2}}\right) \tag{1.7}\\
& \alpha_{2 n+1}=-\frac{1}{1-q}\left(q^{2 n^{2}+4 n+2} \sum_{j=-n}^{n} q^{-2 j^{2}}+q^{2 n^{2}+2 n} \sum_{j=-n-1}^{n} q^{-2 j^{2}-2 j}\right) \tag{1.8}
\end{align*}
$$

and

$$
\begin{equation*}
\beta_{n}=\frac{(-1)^{n}\left(q ; q^{2}\right)_{n}}{(q)_{2 n+1}} \tag{1.9}
\end{equation*}
$$

Recently, we showed that (1.4)-(1.9) are actually special cases of a much more general result (see Theorems 1.1-1.3 in [9]). This led to new Bailey pairs involving indefinite quadratic forms,

https://daneshyari.com/en/article/4672808

Download Persian Version:
https://daneshyari.com/article/4672808

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: lovejoy @ math.cnrs.fr (J. Lovejoy), robert.osburn@ucd.ie, osburn@ihes.fr (R. Osburn).

