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Abstract

In 1988, Andrews, Dyson and Hickerson initiated the study of q-hypergeometric series whose
coefficients are dictated by the arithmetic in real quadratic fields. In this paper, we provide a dozen q-
hypergeometric double sums which are generating functions for the number of ideals of a given norm in
rings of integers of real quadratic fields and prove some related identities.
c⃝ 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

In 1988, Andrews, Dyson and Hickerson [2] initiated the study of q-hypergeometric series
whose coefficients are dictated by the arithmetic in real quadratic fields. They considered a
q-series from Ramanujan’s lost notebook,

σ(q) :=


n≥0

q(n+1
2 )

(−q)n
, (1.1)
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and proved the Hecke-type identity,

σ(q) =


n≥0

−n≤ j≤n

(−1)n+ j qn(3n+1)/2− j2
(1 − q2n+1). (1.2)

Here and throughout we assume that |q| < 1 and use the standard q-hypergeometric notation,

(a)n = (a; q)n =

n
k=1

(1 − aqk−1),

valid for n ∈ N ∪ {∞}. They then used identity (1.2) to relate the coefficients of σ(q) to the ring
of integers of the real quadratic field Q(

√
6). As a consequence, they found that these coefficients

satisfy an “almost” exact formula, are lacunary and yet, surprisingly, assume all integer values
infinitely often.

Other rare and intriguing examples of q-series related to real quadratic fields (predicted to
exist by Dyson [6]) have been discovered over the years (see [3,5,7,8], for example). The key in
each of these cases is the use of Bailey pairs to prove a Hecke-type identity resembling (1.2). We
recall that a Bailey pair relative to a is a pair of sequences (αn, βn)n≥0 satisfying

βn =

n
k=0

αk

(q)n−k(aq)n+k
. (1.3)

For example, Bringmann and Kane [3] discovered the following two Bailey pairs. First, (an, bn)

is a Bailey pair relative to 1, where

a2n = (1 − q4n)q2n2
−2n

n−1
j=−n

q−2 j2
−2 j , (1.4)

a2n+1 = −(1 − q4n+2)q2n2
n

j=−n

q−2 j2
, (1.5)

and

bn =
(−1)n(q; q2)n−1

(q)2n−1
χ(n ≠ 0). (1.6)

Second, (αn, βn) is a Bailey pair relative to q , where

α2n =
1

1 − q


q2n2

+2n
n−1
j=−n

q−2 j2
−2 j

+ q2n2
n

j=−n

q−2 j2


, (1.7)

α2n+1 = −
1

1 − q


q2n2

+4n+2
n

j=−n

q−2 j2
+ q2n2

+2n
n

j=−n−1

q−2 j2
−2 j


, (1.8)

and

βn =
(−1)n(q; q2)n

(q)2n+1
. (1.9)

Recently, we showed that (1.4)–(1.9) are actually special cases of a much more general result
(see Theorems 1.1–1.3 in [9]). This led to new Bailey pairs involving indefinite quadratic forms,
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