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Abstract

Let ¢ > 2 be an integer. We separate a given power series into g subseries according to the residue
classes mod g of their powers. We study algebraic independence for values at an algebraic point of the ¢
subseries of certain exponential power series including the exponential generating function of Fibonacci
numbers. Our proofs rely on Lindemann—Weierstrass theorem.
© 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

Let g be a positive integer. For a given series
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we consider the subseries over arithmetical progressions
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which are called for short subseries mod g (see Section 2). The subseries mod g of the
exponential function e® are
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where & = ¥/ (see (13)). If « is a nonzero algebraic number, then each of the numbers

eqr(a) (0 <r < g) is transcendental by Lindemann—Weierstrass theorem (cf. [8]). Recently
C. Elsner, Yu. V. Nesterenko, and the second named author proved the following:

Theorem 1.1 ([/, Theorem 1]). Let ¢ > 3 be an integer. If « is a nonzero algebraic number,
then among q numbers
eq,O(O(), eq,l(a)7 MR eq,q—l(a)

any ¢(q) are algebraically independent over Q, where ¢ is the Euler totient. Moreover, any
@(q) + 1 of q functions eq 0(2), €4,1(2), ..., eqq—1(2) are algebraically dependent over Q.

In this paper, we investigate algebraic independence over Q of the values at an algebraic point
of subseries mod ¢ of the series
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where ay, az, p1, pa are algebraic numbers different from zero. We obtain the following results.
Theorem 1.2. Let g > 2 be an integer and ay, az, p1, p2 be nonzero algebraic numbers. Assume

that p1/p2 & Q(E), where £ = ¥/, If «a is a nonzero algebraic number, then among q
numbers
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any min{2¢(q), q} are algebraically independent over Q and not are any min{2¢(q), q} + 1.

If p1/p2 € Q(§), then some of the subseries mod ¢ given in (3) may be zero. For example, let
a; = ap = 1 and pp = —py. Then the subseries with ¢ = 2, r = 1 and also those with g = 4,
o1 =1i,r =1 or 3 vanish.

Let {Fy}n>0 and {L,},>0 be Fibonacci and Lucas numbers defined by Fp = 0, F; =
L,Fpyi=F,+F,-1,Lo=2,L1=1,Ly4y1 =L, + L,—1 (n > 1). Specializing the function
(2) to the exponential generating function for Fibonacci numbers (cf. e.g., [4])

i ﬂzn = iez/2 sinh(v/5z/2) )
n=0 n! ﬁ

we deduce
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