

Available online at www.sciencedirect.com

Indagationes Mathematicae 27 (2016) 225-265

indagationes mathematicae

www.elsevier.com/locate/indag

The exponential law for spaces of test functions and diffeomorphism groups

Andreas Kriegl, Peter W. Michor, Armin Rainer

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria

Received 10 November 2014; received in revised form 29 September 2015; accepted 8 October 2015

Communicated by R. Roussarie

Abstract

We prove the exponential law $\mathcal{A}(E \times F, G) \cong \mathcal{A}(E, \mathcal{A}(F, G))$ (bornological isomorphism) for the following classes \mathcal{A} of test functions: \mathcal{B} (globally bounded derivatives), $W^{\infty, p}$ (globally *p*-integrable derivatives), \mathcal{S} (Schwartz space), \mathcal{D} (compact support), $\mathcal{B}^{[M]}$ (globally Denjoy–Carleman), $W^{[M], p}$ (Sobolev–Denjoy–Carleman), $\mathcal{S}^{[M]}_{[L]}$ (Gelfand–Shilov), and $\mathcal{D}^{[M]}$ (Denjoy–Carleman with compact support). Here E, F, G are convenient vector spaces which are finite dimensional in the cases of $\mathcal{D}, W^{\infty, p}, \mathcal{D}^{[M]}$, and $W^{[M], p}$. Moreover, $M = (M_k)$ is a weakly log-convex weight sequence of moderate growth. As application we give a new simple proof of the fact that the groups of diffeomorphisms Diff \mathcal{B} , Diff $W^{\infty, p}$, Diff \mathcal{S} , and Diff \mathcal{D} are C^{∞} Lie groups, and that Diff $\mathcal{B}^{\{M\}}$, Diff $W^{\{M\}, p}$, Diff $\mathcal{S}^{\{M\}}_{\{L\}}$, and Diff $\mathcal{D}^{\{M\}}$, for non-quasianalytic M, are $C^{\{M\}}$ Lie groups, where Diff $\mathcal{A} = \{\mathrm{Id} + f : f \in \mathcal{A}(\mathbb{R}^n, \mathbb{R}^n), \inf_{x \in \mathbb{R}^n} \det(\mathbb{I}_n + df(x)) > 0\}$. We also discuss stability under composition.

© 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Convenient setting; Exponential law; Test functions; Sobolev functions; Denjoy-Carleman classes; Gelfand-Shilov classes

http://dx.doi.org/10.1016/j.indag.2015.10.006

0019-3577/© 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

E-mail addresses: andreas.kriegl@univie.ac.at (A. Kriegl), peter.michor@univie.ac.at (P.W. Michor), armin.rainer@univie.ac.at (A. Rainer).

1. Introduction

In this paper we prove the bornological isomorphism

$$\mathcal{A}(E \times F, G) \cong \mathcal{A}(E, \mathcal{A}(F, G)) \tag{1}$$

for several classes \mathcal{A} of test functions. It is called *exponential law*, since it takes the form $G^{E \times F} = (G^F)^E$ if one writes $\mathcal{A}(X, Y) = Y^X$.

The exponential law (1) is well-known in the categories of C^{∞} , real analytic, and holomorphic functions; see [8]. In [9–11] we established the exponential law (1) for local Denjoy–Carleman classes $C^{[M]}$, provided that $M = (M_k)$ is weakly log-convex and has moderate growth. (The notation $C^{[M]}$ stands for the classes $C^{\{M\}}$ of Roumieu type as well as for the classes $C^{(M)}$ of Beurling type, cf. Section 2.2.) In all these cases the underlying spaces E, F, G are so-called *convenient* vector spaces, i.e., locally convex spaces that are Mackey complete.

We shall prove (1) for the following classes A of test functions (see Sections 3 and 6 for the precise definitions):

- Smooth functions with globally bounded derivatives $\mathcal{B} (= \mathcal{D}_{L^{\infty}}$ in [19])
- Smooth functions with *p*-integrable derivatives $W^{\infty,p}$ (= \mathcal{D}_{L^p} in [19])
- Rapidly decreasing Schwartz functions S
- Smooth functions with compact support \mathcal{D}
- Global Denjoy–Carleman classes $\mathcal{B}^{[M]}$
- Sobolev–Denjoy–Carleman classes W^{[M], p}
- Gelfand–Shilov classes $S_{[L]}^{[M]}$
- Denjoy–Carleman functions with compact support $\mathcal{D}^{[M]}$

For the sequence $L = (L_k)$ we just assume $L_k \ge 1$ for all k.

The underlying spaces are again convenient vector spaces, except for \mathcal{D} , $W^{\infty,p}$, $\mathcal{D}^{[M]}$, and $W^{[M],p}$ when E, F, G are assumed to be finite dimensional. The definition of the classes $\mathcal{B}, \mathcal{S}, \mathcal{B}^{[M]}$, and $\mathcal{S}^{[M]}_{[L]}$ makes obvious sense between arbitrary Banach spaces. By definition, a C^{∞} -mapping $f : E \to F$ between general convenient vector spaces belongs to the class if the composite $\ell \circ f \circ i_B : E_B \to \mathbb{R}$ is in the class for each continuous linear functional $\ell : F \to \mathbb{R}$ and each closed absolutely convex bounded subset $B \subseteq E$, where $i_B : E_B \to E$ denotes the inclusions of the linear span E_B of B which equipped with the Minkowski functional is a Banach space.

For finite dimensional parameter spaces we have the following continuous inclusions, where $1 \le p < q < \infty$; for the inclusions marked by * we assume that $M = (M_k)$ is derivation closed.

We are grateful to a referee who pointed out that

$$\mathcal{D}(\mathbb{R}^{\ell} \times \mathbb{R}^{m}, \mathbb{R}^{n}) \cong \mathcal{D}(\mathbb{R}^{\ell}, \mathcal{D}(\mathbb{R}^{m}, \mathbb{R}^{n}))$$
(2)

226

Download English Version:

https://daneshyari.com/en/article/4672826

Download Persian Version:

https://daneshyari.com/article/4672826

Daneshyari.com