Sharp symplectic embeddings of cylinders

Álvaro Pelayo ${ }^{\text {a,b }}$, San Vũ Ngọc ${ }^{\text {c,d,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of California, San Diego, 9500 Gilman Drive \# 0112, La Jolla, CA 92093-0112, USA
${ }^{\mathrm{b}}$ School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA
${ }^{\text {c }}$ Institut de Recherches Mathématiques de Rennes, Université de Rennes 1, Campus de Beaulieu,
F-35042 Rennes cedex, France
${ }^{\text {d }}$ Institut Universitaire de France, France

Received 30 September 2015; accepted 27 October 2015
Communicated by H.W. Broer

Abstract

We show that the cylinder $\mathrm{B}^{2}(1) \times \mathbb{R}^{2(n-1)}$ embeds symplectically into $\mathrm{B}^{4}(\sqrt{3}) \times \mathbb{R}^{2(n-2)}$. (c) 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Symplectic topology; Embedding; Symplectic capacity

1. Introduction

The existence (or not) of symplectic embeddings has been a driving question in symplectic topology since Gromov's pioneering article [3], and there have been a number of important papers in the subject in the recent years, see for instance Biran [1], Hind-Kerman [5], Lalonde-Pinsonnault [6], McDuff-Polterovich [7], McDuff-Schlenk [8], and Schlenk [10]. In this paper our ambient space is $\mathbb{R}^{2 n}$ with coordinates $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$ on which we consider the standard symplectic form $\mathrm{d} x_{1} \wedge \mathrm{~d} y_{1}+\cdots+\mathrm{d} x_{n} \wedge \mathrm{~d} y_{n}$. A smooth embedding $F: U \rightarrow V$ between subsets of $\mathbb{R}^{2 n}$ is symplectic if F pulls back this form to itself. Let $\mathrm{B}^{2 n}(R)$ denote the

[^0]open ball of radius R in $\mathbb{R}^{2 n}$, where $R>0$, that is, the set of points $\left(x_{1}, y_{1} \ldots, x_{n}, y_{n}\right) \in \mathbb{R}^{2 n}$ such that $\sum_{i=1}^{n}\left(x_{i}\right)^{2}+\left(y_{i}\right)^{2}<R^{2}$.

Question 1.1 (Hind and Kerman [5, Question 2]). Let $n \geqslant 3$. Can $\overline{\mathrm{B}^{2}(1)} \times \mathrm{B}^{2(n-1)}(S)$ be symplectically embedded into $\overline{\mathrm{B}^{4}(R)} \times \mathbb{R}^{2(n-2)}$ for arbitrarily large $S>0$? If so, what is the smallest $R>0$ for which this is possible?

In [4], Guth proved that such an R exists, which was a surprise at that time. Then, the question was settled by Hind-Kerman [5] for all numbers R but one: $R=\sqrt{3}$. They proved that there are embeddings when $R>\sqrt{3}$ for all $S>0$, but there are not such embeddings if $R<\sqrt{3}$ and S is sufficiently large. Prior to their work it was known that the Ekeland-Hofer capacity implied $R>\sqrt{2}$, if such embeddings did exist (see [2]).

Let $\mathrm{Z}^{2 n}(r)$ denote the cylinder of radius r in $\mathbb{R}^{2 n}$, where $r>0$, that is, the set of points $\left(x_{1}, y_{1} \ldots, x_{n}, y_{n}\right) \in \mathbb{R}^{2 n}$ such that $\left(x_{1}\right)^{2}+\left(y_{1}\right)^{2}<r^{2}$. The goal of this paper is to show the following theorem about symplectic embeddings of cylinders, which in particular completes the answer to Question 1.1 in the case of open balls by answering the end-point case.

Theorem 1.2. The cylinder $Z^{2 n}(1)$ embeds symplectically into the product $B^{4}(\sqrt{3}) \times \mathbb{R}^{2(n-2)}$.
It follows from Hind-Kerman [5] and Theorem 1.2 that the cylinder $Z^{2 n}(1)$ embeds symplectically into the product $\mathrm{B}^{4}(R) \times \mathbb{R}^{2(n-2)}$ if and only if $R \geqslant \sqrt{3}$. The proof of Theorem 1.2 relies on [4,9] and follows closely essential ideas of [5].

Remark 1.3. Theorem 1.2 can be used to derive an alternative proof of the inexistence of symplectic d-capacities $(1<d<n)$ proven in [9].

2. Smoothness of families and Guth's Lemma

Following [9, Section 3], we have the following natural notions.
Definition 2.1. Let P, N be smooth manifolds. Let $\left(B_{p}\right)_{p \in P}$ be a family of submanifolds of N. We say that $\left(B_{p}\right)_{p \in P}$ is a smooth family if there is a smooth manifold B and a smooth map $g: P \times B \rightarrow N$ such that $g_{p}: b \mapsto g(p, b)$ is an embedding and $B_{p}=g(p, B)$, for every $p \in P$. The family is a smooth family of symplectic manifolds if each B_{p} is a symplectic submanifold with respect to the symplectic structure inherited by B_{p} from N.

Definition 2.2. Let P, M, N be smooth manifolds. Let $\left(B_{p}\right)_{p \in P}$ be a family of submanifolds of N. For each $p \in P$, let $\phi_{p}: B_{p} \hookrightarrow M$ be an embedding. We say that $\left(\phi_{p}\right)_{p \in P}$ is a smooth family of embeddings if the following properties hold:
(1) the family $\left(B_{p}\right)_{p \in P}$ is a smooth family of submanifolds in the sense of Definition 2.1;
(2) the map $\Phi: P \times B \rightarrow M$ defined by $\Phi(p, b):=\phi_{p} \circ g(p, b)$ is smooth.

In this case we also say that $\left(\phi_{p}: B_{p} \hookrightarrow M_{p}\right)_{p \in P}$ is a smooth family of embeddings when M_{p} is a submanifold of M containing $\phi_{p}\left(B_{p}\right)$. If M and N are symplectic, then a smooth family of symplectic embeddings is a smooth family of embeddings $\left(\phi_{p}\right)_{p \in P}$ such that each B_{p} is a symplectic submanifold and $\phi_{p}: B_{p} \hookrightarrow M$ is symplectic.

Definition 2.3. If in Definition 2.1 or in Definition $2.2 P$ is a subset of a smooth manifold \tilde{P}, then we say that the families $\left(B_{p}\right)_{p \in P}$ or $\left(\phi_{p}\right)_{p \in P}$ are smooth if there is an open neighborhood U of P such that $g: P \times B \rightarrow N$ or $\Phi: P \times B \rightarrow M$ may be smoothly extended to $U \times B$.

https://daneshyari.com/en/article/4672830

Download Persian Version:
https://daneshyari.com/article/4672830

Daneshyari.com

[^0]: * Corresponding author at: Institut de Recherches Mathématiques de Rennes, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes cedex, France.

 E-mail address: san.vu-ngoc@univ-rennes1.fr (S. Vũ Ngọc).

