

Available online at www.sciencedirect.com

ScienceDirect

indagationes mathematicae

Indagationes Mathematicae 27 (2016) 307-317

www.elsevier.com/locate/indag

Sharp symplectic embeddings of cylinders

Álvaro Pelayo^{a,b}, San Vũ Ngọc^{c,d,*}

^a Department of Mathematics, University of California, San Diego, 9500 Gilman Drive # 0112, La Jolla, CA 92093-0112, USA

^b School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

^c Institut de Recherches Mathématiques de Rennes, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes cedex, France ^d Institut Universitaire de France, France

Received 30 September 2015; accepted 27 October 2015

Communicated by H.W. Broer

Abstract

We show that the cylinder $B^2(1) \times \mathbb{R}^{2(n-1)}$ embeds symplectically into $B^4(\sqrt{3}) \times \mathbb{R}^{2(n-2)}$. © 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Symplectic topology; Embedding; Symplectic capacity

1. Introduction

The existence (or not) of symplectic embeddings has been a driving question in symplectic topology since Gromov's pioneering article [3], and there have been a number of important papers in the subject in the recent years, see for instance Biran [1], Hind–Kerman [5], Lalonde–Pinsonnault [6], McDuff–Polterovich [7], McDuff–Schlenk [8], and Schlenk [10]. In this paper our ambient space is \mathbb{R}^{2n} with coordinates $(x_1, y_1, \ldots, x_n, y_n)$ on which we consider the standard symplectic form $dx_1 \wedge dy_1 + \cdots + dx_n \wedge dy_n$. A smooth embedding $F: U \to V$ between subsets of \mathbb{R}^{2n} is *symplectic* if F pulls back this form to itself. Let $\mathbb{B}^{2n}(R)$ denote the

E-mail address: san.vu-ngoc@univ-rennes1.fr (S. Vũ Ngọc).

^{*} Corresponding author at: Institut de Recherches Mathématiques de Rennes, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes cedex, France.

open ball of radius R in \mathbb{R}^{2n} , where R > 0, that is, the set of points $(x_1, y_1, \dots, x_n, y_n) \in \mathbb{R}^{2n}$ such that $\sum_{i=1}^{n} (x_i)^2 + (y_i)^2 < R^2$.

Question 1.1 (Hind and Kerman [5, Question 2]). Let $n \ge 3$. Can $\overline{B^2(1)} \times B^{2(n-1)}(S)$ be symplectically embedded into $\overline{B^4(R)} \times \mathbb{R}^{2(n-2)}$ for arbitrarily large S > 0? If so, what is the smallest R > 0 for which this is possible?

In [4], Guth proved that such an R exists, which was a surprise at that time. Then, the question was settled by Hind–Kerman [5] for all numbers R but one: $R = \sqrt{3}$. They proved that there are embeddings when $R > \sqrt{3}$ for all S > 0, but there are not such embeddings if $R < \sqrt{3}$ and S is sufficiently large. Prior to their work it was known that the Ekeland–Hofer capacity implied $R > \sqrt{2}$, if such embeddings did exist (see [2]).

Let $Z^{2n}(r)$ denote the cylinder of radius r in \mathbb{R}^{2n} , where r > 0, that is, the set of points $(x_1, y_1, \dots, x_n, y_n) \in \mathbb{R}^{2n}$ such that $(x_1)^2 + (y_1)^2 < r^2$. The goal of this paper is to show the following theorem about symplectic embeddings of cylinders, which in particular completes the answer to Question 1.1 in the *case of open balls* by answering the end-point case.

Theorem 1.2. The cylinder $Z^{2n}(1)$ embeds symplectically into the product $B^4(\sqrt{3}) \times \mathbb{R}^{2(n-2)}$.

It follows from Hind–Kerman [5] and Theorem 1.2 that the cylinder $\mathbb{Z}^{2n}(1)$ embeds symplectically into the product $\mathbb{B}^4(R) \times \mathbb{R}^{2(n-2)}$ if and only if $R \geqslant \sqrt{3}$. The proof of Theorem 1.2 relies on [4,9] and follows closely essential ideas of [5].

Remark 1.3. Theorem 1.2 can be used to derive an alternative proof of the inexistence of symplectic d-capacities (1 < d < n) proven in [9]. \oslash

2. Smoothness of families and Guth's Lemma

Following [9, Section 3], we have the following natural notions.

Definition 2.1. Let P, N be smooth manifolds. Let $(B_p)_{p \in P}$ be a family of submanifolds of N. We say that $(B_p)_{p \in P}$ is a *smooth family* if there is a smooth manifold B and a smooth map $g: P \times B \to N$ such that $g_p: b \mapsto g(p, b)$ is an embedding and $B_p = g(p, B)$, for every $p \in P$. The family is a *smooth family of symplectic manifolds* if each B_p is a symplectic submanifold with respect to the symplectic structure inherited by B_p from N.

Definition 2.2. Let P, M, N be smooth manifolds. Let $(B_p)_{p \in P}$ be a family of submanifolds of N. For each $p \in P$, let $\phi_p : B_p \hookrightarrow M$ be an embedding. We say that $(\phi_p)_{p \in P}$ is a *smooth family of embeddings* if the following properties hold:

- (1) the family $(B_p)_{p \in P}$ is a smooth family of submanifolds in the sense of Definition 2.1;
- (2) the map $\Phi: P \times B \to M$ defined by $\Phi(p,b) := \phi_p \circ g(p,b)$ is smooth.

In this case we also say that $(\phi_p: B_p \hookrightarrow M_p)_{p \in P}$ is a *smooth family of embeddings* when M_p is a submanifold of M containing $\phi_p(B_p)$. If M and N are symplectic, then a *smooth family of symplectic embeddings* is a smooth family of embeddings $(\phi_p)_{p \in P}$ such that each B_p is a symplectic submanifold and $\phi_p: B_p \hookrightarrow M$ is symplectic.

Definition 2.3. If in Definition 2.1 or in Definition 2.2 P is a subset of a smooth manifold \tilde{P} , then we say that the families $(B_p)_{p \in P}$ or $(\phi_p)_{p \in P}$ are *smooth* if there is an open neighborhood U of P such that $g: P \times B \to N$ or $\Phi: P \times B \to M$ may be smoothly extended to $U \times B$.

Download English Version:

https://daneshyari.com/en/article/4672830

Download Persian Version:

https://daneshyari.com/article/4672830

<u>Daneshyari.com</u>