

Available online at www.sciencedirect.com

indagationes mathematicae

Indagationes Mathematicae 27 (2016) 392-405

www.elsevier.com/locate/indag

Diophantine equations with truncated binomial polynomials

Artūras Dubickas^a, Dijana Kreso^{b,*}

^a Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania ^b Institut für Analysis und Computational Number Theory (Math A), Technische Universität Graz, Steyrergasse 30/II, 8010 Graz, Austria

Received 20 February 2015; received in revised form 3 September 2015; accepted 6 November 2015

Communicated by F. Beukers

Abstract

For positive integers $k \le n$ let $P_{n,k}(x) := \sum_{j=0}^{k} {n \choose j} x^j$ be the binomial expansion of $(1 + x)^n$ truncated at the *k*th stage. In this paper we show the finiteness of solutions of Diophantine equations of type $P_{n,k}(x) = P_{m,l}(y)$ in $x, y \in \mathbb{Z}$ under assumption of irreducibility of truncated binomial polynomials $P_{n-1,k-1}(x)$ and $P_{m-1,l-1}(x)$. Although the irreducibility of $P_{n,k}(x)$ has been studied by several authors, in general, this problem is still open. In addition, we give some results about the possible ways to write $P_{n,k}(x)$ as a functional composition of two lower degree polynomials.

© 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Truncated binomial expansion; Dickson polynomial; Diophantine equations

1. Introduction and main results

For positive integers $k \leq n$ put

$$P_{n,k}(x) := \sum_{j=0}^{k} \binom{n}{j} x^{j} = \binom{n}{0} + \binom{n}{1} x + \binom{n}{2} x^{2} + \dots + \binom{n}{k} x^{k}.$$

* Corresponding author.

E-mail addresses: arturas.dubickas@mif.vu.lt (A. Dubickas), kreso@math.tugraz.at (D. Kreso).

http://dx.doi.org/10.1016/j.indag.2015.11.006

0019-3577/© 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

The polynomial $P_{n,k}(x)$ is said to be a *truncated binomial expansion* (*polynomial*) at the *k*th stage. We study Diophantine equations of type

$$P_{n,k}(x) = P_{m,l}(y) \quad \text{with } n, k, m, l \in \mathbb{N}, \ k \le n-1, \ l \le m-1.$$
(1.1)

We prove that Eq. (1.1) has only finitely many integer solutions under certain reasonable assumptions. The main results are deduced from a general finiteness criterion for the Diophantine equation f(x) = g(y) established by Bilu and Tichy in [3]. The proof requires several auxiliary results about the possible ways to write a truncated binomial expansion as a functional composition of two lower degree polynomials, as the above mentioned theorem of Bilu and Tichy essentially says that the equation of type f(x) = g(y) has only finitely many solutions in integers x, y, unless the polynomials f(x) and g(x) can be written as a functional composition of some lower degree polynomials in a prescribed way. Factorization of polynomials under the operation of functional composition, i.e. "polynomial decomposition" was first studied by Ritt [13], and subsequently investigated and applied by many other authors; see, for instance, [3,6,9,11,12,15,18,20].

Our interest in Eq. (1.1) has arisen from our considerations of decomposition properties of truncated binomial expansions. Note that $P'_{n,k}(x) = nP_{n-1,k-1}(x)$, so if $P_{n,k}(x) = g(h(x))$, where $g(x), h(x) \in \mathbb{Q}[x]$ satisfy deg g > 1 and deg h > 1, then

$$nP_{n-1,k-1}(x) = P'_{n,k}(x) = g'(h(x))h'(x),$$

and, consequently, the polynomial $P_{n-1,k-1}(x)$ is reducible over \mathbb{Q} . The question of irreducibility of truncated binomial expansions first appeared in [14]. It was studied by Filaseta, Kumchev and Pasechnik [8], and subsequently by Khanduja, Khassa and Laishram [10]. There are indications that the polynomials $P_{n,k}(x)$ are irreducible for all pairs $k, n \in \mathbb{N}$ satisfying $k \le n-2$, although this problem is still far from being solved. It is known that $P_{n,k}(x)$ are irreducible for $n \le 100$ and $k \le n-2$, see [8]. It is easy to see that $P_{n,k}(x)$ is irreducible for k = 2, since in this case the discriminant of the polynomial is negative, so that it has two complex roots. It is also known that $P_{n,k}(x)$ are irreducible for all $k, n \in \mathbb{N}$ satisfying $2k \le n < (k+1)^3$, see [10]. Furthermore, as it was shown in [8] for any fixed integer $k \ge 3$ there exists an integer $n_0(k)$ such that $P_{n,k}(x)$ is irreducible for every $n \ge n_0$. Finally, in the same paper it was proved that if n is prime, then $P_{n,k}(x)$ is irreducible for each k in the range $1 \le k \le n-1$.

In this paper we prove the following.

Theorem 1.1. Let $n, k, m, l \in \mathbb{N}$ be such that $2 \le k \le n - 1, 2 \le l \le m - 1$ and $k \ne l$. If $P_{n-1,k-1}(x)$ and $P_{m-1,l-1}(x)$ are irreducible, then the equation $P_{n,k}(x) = P_{m,l}(y)$ has at most finitely many integer solutions (x, y).

Note that the truncated binomial expansion at the last stage, i.e. when k = n - 1, takes the form $P_{n,n-1}(x) = (x + 1)^n - x^n$. If *n* is a composite integer, then $P_{n,n-1}(x)$ is clearly reducible. If n = p is a prime, then the polynomial $P_{n,n-1}(x) = P_{p,p-1}(x)$ is irreducible, by the Eisenstein criterion applied to the reciprocal polynomial $x^{p-1}P_{p,p-1}(1/x)$. As an auxiliary result we show that if *n* is even, then $P_{n,n-1}(x)$ cannot be written in the form

$$P_{n,n-1}(x) = g(x) \circ h(x) = g(h(x))$$

with $g(x), h(x) \in \mathbb{C}[x]$ and deg g > 1, deg h > 1. We further show that if n is odd, then essentially the only way to write $P_{n,n-1}(x)$ as a functional composition of polynomials of lower degree is the following: write n = 2n' + 1 and $\omega_j = \exp(2\pi i j/n), j = 1, 2, ..., n$, so that

Download English Version:

https://daneshyari.com/en/article/4672835

Download Persian Version:

https://daneshyari.com/article/4672835

Daneshyari.com