indagationes mathematicae

# Diophantine equations with truncated binomial polynomials 

Artūras Dubickas ${ }^{\text {a }}$, Dijana Kreso ${ }^{\text {b,* }}$<br>${ }^{\text {a }}$ Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania<br>${ }^{\mathrm{b}}$ Institut für Analysis und Computational Number Theory (Math A), Technische Universität Graz, Steyrergasse 30/II, 8010 Graz, Austria

Received 20 February 2015; received in revised form 3 September 2015; accepted 6 November 2015

Communicated by F. Beukers


#### Abstract

For positive integers $k \leq n$ let $P_{n, k}(x):=\sum_{j=0}^{k}\binom{n}{j} x^{j}$ be the binomial expansion of $(1+x)^{n}$ truncated at the $k$ th stage. In this paper we show the finiteness of solutions of Diophantine equations of type $P_{n, k}(x)=P_{m, l}(y)$ in $x, y \in \mathbb{Z}$ under assumption of irreducibility of truncated binomial polynomials $P_{n-1, k-1}(x)$ and $P_{m-1, l-1}(x)$. Although the irreducibility of $P_{n, k}(x)$ has been studied by several authors, in general, this problem is still open. In addition, we give some results about the possible ways to write $P_{n, k}(x)$ as a functional composition of two lower degree polynomials. © 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.


Keywords: Truncated binomial expansion; Dickson polynomial; Diophantine equations

## 1. Introduction and main results

For positive integers $k \leq n$ put

$$
P_{n, k}(x):=\sum_{j=0}^{k}\binom{n}{j} x^{j}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{k} x^{k} .
$$

[^0]The polynomial $P_{n, k}(x)$ is said to be a truncated binomial expansion (polynomial) at the $k$ th stage. We study Diophantine equations of type

$$
\begin{equation*}
P_{n, k}(x)=P_{m, l}(y) \quad \text { with } n, k, m, l \in \mathbb{N}, k \leq n-1, l \leq m-1 . \tag{1.1}
\end{equation*}
$$

We prove that Eq. (1.1) has only finitely many integer solutions under certain reasonable assumptions. The main results are deduced from a general finiteness criterion for the Diophantine equation $f(x)=g(y)$ established by Bilu and Tichy in [3]. The proof requires several auxiliary results about the possible ways to write a truncated binomial expansion as a functional composition of two lower degree polynomials, as the above mentioned theorem of Bilu and Tichy essentially says that the equation of type $f(x)=g(y)$ has only finitely many solutions in integers $x, y$, unless the polynomials $f(x)$ and $g(x)$ can be written as a functional composition of some lower degree polynomials in a prescribed way. Factorization of polynomials under the operation of functional composition, i.e. "polynomial decomposition" was first studied by Ritt [13], and subsequently investigated and applied by many other authors; see, for instance, [3,6,9,11, 12,15,18,20].

Our interest in Eq. (1.1) has arisen from our considerations of decomposition properties of truncated binomial expansions. Note that $P_{n, k}^{\prime}(x)=n P_{n-1, k-1}(x)$, so if $P_{n, k}(x)=g(h(x))$, where $g(x), h(x) \in \mathbb{Q}[x]$ satisfy $\operatorname{deg} g>1$ and $\operatorname{deg} h>1$, then

$$
n P_{n-1, k-1}(x)=P_{n, k}^{\prime}(x)=g^{\prime}(h(x)) h^{\prime}(x)
$$

and, consequently, the polynomial $P_{n-1, k-1}(x)$ is reducible over $\mathbb{Q}$. The question of irreducibility of truncated binomial expansions first appeared in [14]. It was studied by Filaseta, Kumchev and Pasechnik [8], and subsequently by Khanduja, Khassa and Laishram [10]. There are indications that the polynomials $P_{n, k}(x)$ are irreducible for all pairs $k, n \in \mathbb{N}$ satisfying $k \leq n-2$, although this problem is still far from being solved. It is known that $P_{n, k}(x)$ are irreducible for $n \leq 100$ and $k \leq n-2$, see [8]. It is easy to see that $P_{n, k}(x)$ is irreducible for $k=2$, since in this case the discriminant of the polynomial is negative, so that it has two complex roots. It is also known that $P_{n, k}(x)$ are irreducible for all $k, n \in \mathbb{N}$ satisfying $2 k \leq n<(k+1)^{3}$, see [10]. Furthermore, as it was shown in [8] for any fixed integer $k \geq 3$ there exists an integer $n_{0}(k)$ such that $P_{n, k}(x)$ is irreducible for every $n \geq n_{0}$. Finally, in the same paper it was proved that if $n$ is prime, then $P_{n, k}(x)$ is irreducible for each $k$ in the range $1 \leq k \leq n-1$.

In this paper we prove the following.
Theorem 1.1. Let $n, k, m, l \in \mathbb{N}$ be such that $2 \leq k \leq n-1,2 \leq l \leq m-1$ and $k \neq l$. If $P_{n-1, k-1}(x)$ and $P_{m-1, l-1}(x)$ are irreducible, then the equation $P_{n, k}(x)=P_{m, l}(y)$ has at most finitely many integer solutions $(x, y)$.

Note that the truncated binomial expansion at the last stage, i.e. when $k=n-1$, takes the form $P_{n, n-1}(x)=(x+1)^{n}-x^{n}$. If $n$ is a composite integer, then $P_{n, n-1}(x)$ is clearly reducible. If $n=p$ is a prime, then the polynomial $P_{n, n-1}(x)=P_{p, p-1}(x)$ is irreducible, by the Eisenstein criterion applied to the reciprocal polynomial $x^{p-1} P_{p, p-1}(1 / x)$. As an auxiliary result we show that if $n$ is even, then $P_{n, n-1}(x)$ cannot be written in the form

$$
P_{n, n-1}(x)=g(x) \circ h(x)=g(h(x))
$$

with $g(x), h(x) \in \mathbb{C}[x]$ and $\operatorname{deg} g>1$, $\operatorname{deg} h>1$. We further show that if $n$ is odd, then essentially the only way to write $P_{n, n-1}(x)$ as a functional composition of polynomials of lower degree is the following: write $n=2 n^{\prime}+1$ and $\omega_{j}=\exp (2 \pi i j / n), j=1,2, \ldots, n$, so that

# https://daneshyari.com/en/article/4672835 

Download Persian Version:
https://daneshyari.com/article/4672835

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: arturas.dubickas@mif.vu.lt (A. Dubickas), kreso@math.tugraz.at (D. Kreso).

