The band method and inverse problems for orthogonal matrix functions of Szegő-Kreǐn type

M.A. Kaashoek ${ }^{\text {a,* }}$, L. Lerer ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, VU University, Amsterdam, The Netherlands
${ }^{\mathrm{b}}$ Department of Mathematics, Technion, Haifa, Israel

Dedicated to the memory of Israel Gohberg, a wonderful mathematician and a dear friend. His achievements will be a source of inspiration for many years to come

Abstract

A band method approach for solving inverse problems for certain orthogonal functions is developed. The inverse theorems for Szegő-Krě̌n matrix polynomials and for Krě̌n orthogonal entire matrix functions are obtained as corollaries of the band method results. Other examples, including a non-stationary variant of the Szegő-Kreǐn theorem, are presented to illustrate the scope of the abstract theorems. (c) 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Band method; Inverse problems; Orthogonal polynomial; Orthogonal entire function; Non-stationary orthogonal polynomial; Matrix polynomial equation; Entire matrix function equation; Jordan chain; Root function

1. Introduction

The band method is an abstract scheme that allows one to deal with matrix-valued versions of classical interpolation problems, such as those of Schur, Carathéodory-Toeplitz and Nehari, from one point of view. The method has its origin in papers of Dym and Gohberg from the early eighties $[4,5,3]$, and has been developed into a more final form in papers by Gohberg and coauthors in [11,12]. A comprehensive introduction to the method and additional references can be found in Chapter XXXIV of the book [7]. For more recent contributions see the article [14] and the references therein.

[^0]In the present paper the inverse theorems for Szegő-Krě̌n matrix polynomials given in [13] are put into the context of the band method using ideas from [1]. We also use our band method results to prove various other inverse theorems, including the one for Kreǐn orthogonal entire matrix functions presented in [10].

To state our main theorem, we first recall some of the basic elements of the band method theory. Let \mathcal{M} be a $*$-subalgebra of a unital C^{*}-algebra \mathcal{R} such that the unit e of \mathcal{R} belongs to \mathcal{M}. Assume that \mathcal{M} admits a direct sum decomposition

$$
\begin{equation*}
\mathcal{M}=\mathcal{M}_{1} \dot{+} \mathcal{M}_{2}^{0} \dot{+} \mathcal{M}_{d} \dot{+} \mathcal{M}_{3}^{0} \dot{+} \mathcal{M}_{4} \tag{1.1}
\end{equation*}
$$

where the summands $\mathcal{M}_{1}, \mathcal{M}_{2}^{0}, \mathcal{M}_{d}, \mathcal{M}_{3}^{0}$, and \mathcal{M}_{4} are linear submanifolds of \mathcal{M}. The algebra \mathcal{M} is called an algebra with band structure if, in addition, the following three conditions are satisfied
(C1) $e \in \mathcal{M}_{d}$,
(C2) $\mathcal{M}_{1}^{*}=\mathcal{M}_{4},\left(\mathcal{M}_{2}^{0}\right)^{*}=\mathcal{M}_{3}^{0}$, and $\mathcal{M}_{d}=\mathcal{M}_{d}^{*}$,
(C3) the following multiplication table describes some additional restrictions on the multiplication in \mathcal{M} :

	\mathcal{M}_{1}	\mathcal{M}_{2}^{0}	\mathcal{M}_{d}	\mathcal{M}_{3}^{0}	\mathcal{M}_{4}
\mathcal{M}_{1}	\mathcal{M}_{1}	\mathcal{M}_{1}	\mathcal{M}_{1}	\mathcal{M}_{+}^{0}	\mathcal{M}
\mathcal{M}_{2}^{0}	\mathcal{M}_{1}	\mathcal{M}_{+}^{0}	\mathcal{M}_{2}^{0}	\mathcal{M}_{c}	\mathcal{M}_{-}^{0}
\mathcal{M}_{d}	\mathcal{M}_{1}	\mathcal{M}_{2}^{0}	\mathcal{M}_{d}	\mathcal{M}_{3}^{0}	\mathcal{M}_{4}
\mathcal{M}_{3}^{0}	\mathcal{M}_{+}^{0}	\mathcal{M}_{c}	\mathcal{M}_{3}^{0}	\mathcal{M}_{-}^{0}	\mathcal{M}_{4}
\mathcal{M}_{4}	\mathcal{M}	\mathcal{M}_{-}^{0}	\mathcal{M}_{4}	\mathcal{M}_{4}	\mathcal{M}_{4}.

Here

$$
\mathcal{M}_{+}^{0}=\mathcal{M}_{1} \dot{+} \mathcal{M}_{2}^{0}, \quad \mathcal{M}_{c}=\mathcal{M}_{2}^{0} \dot{+} \mathcal{M}_{d} \dot{+} \mathcal{M}_{3}^{0}, \quad \mathcal{M}_{-}^{0}=\mathcal{M}_{3}^{0} \dot{+} \mathcal{M}_{4}
$$

We shall also need the linear submanifolds of \mathcal{M} given by

$$
\begin{array}{lc}
\mathcal{M}_{+}=\mathcal{M}_{+}^{0} \dot{+} \mathcal{M}_{d}, & \mathcal{M}_{-}=\mathcal{M}_{-}^{0} \dot{+} \mathcal{M}_{d} \\
\mathcal{M}_{2}=\mathcal{M}_{2}^{0} \dot{+} \mathcal{M}_{d}, & \mathcal{M}_{3}=\mathcal{M}_{3}^{0} \dot{+} \mathcal{M}_{d}
\end{array}
$$

An element $m \in \mathcal{M}$ will be called selfadjoint whenever $m=m^{*}$.
The inverse problem we shall be dealing with in this band method setting is the following problem. Given $q \in \mathcal{M}_{2}$ and $a=a^{*} \in \mathcal{M}_{d}$, find $f=f^{*} \in \mathcal{M}_{c}$ such that

$$
\begin{equation*}
P_{\mathcal{M}_{2}}(f q) \in \mathcal{M}_{d}, \quad P_{\mathcal{M}_{d}}\left(q^{*} f q\right)=a \tag{1.3}
\end{equation*}
$$

Here $P_{\mathcal{M}_{2}}$ denotes the projection of \mathcal{M} onto \mathcal{M}_{2} along the other spaces in the decomposition (1.1). In a similar way one defines other projections corresponding to subspaces in (1.1). In particular, $P_{\mathcal{M}_{d}}$ is the projection of \mathcal{M} onto \mathcal{M}_{d} along $\mathcal{M}_{+}^{0} \dot{+} \mathcal{M}_{-}^{0}$, and $P_{\mathcal{M}_{c}}$ is the projection of \mathcal{M} onto \mathcal{M}_{c} along \mathcal{M}_{1} and \mathcal{M}_{4}.

We shall see that under the additional condition that q has an inverse in \mathcal{M} the above problem is solvable if and only if the equation

$$
\begin{equation*}
u q-q^{*} v=a \tag{1.4}
\end{equation*}
$$

has a solution $u \in \mathcal{M}_{2}$ and $v \in \mathcal{M}_{1}$. The following theorem is the main result of this paper.

https://daneshyari.com/en/article/4672874

Download Persian Version:

https://daneshyari.com/article/4672874

Daneshyari.com

[^0]: * Corresponding author. Tel.: +31 235289768.

 E-mail addresses: m.a.kaashoek@vu.nl (M.A. Kaashoek), llerer@techunix.technion.ac.il (L. Lerer).
 0019-3577/\$ - see front matter © 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
 doi:10.1016/j.indag.2012.04.007

