Approximation and solution of a general symmetric functional equation

Hamid Rezaei*
Department of Mathematics, College of Sciences, Yasouj University, Yasouj-75914-74831, Iran
Received 23 August 2012; accepted 30 May 2013
Communicated by B. de Pagter

Abstract

In this paper, we investigate the Hyers-Ulam-Rassias stability of a general equation $f\left(\varphi_{1}(x, y)\right)=\varphi_{2}$ $(f(x), f(y))$ in metric spaces. As a consequence, we obtain some stability results in the sense of Hyers-Ulam-Rassias. (c) 2013 Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).

Keywords: Functional equation; Hyers-Ulam-Rassias stability; Fixed point

1. Introduction

The stability theory of functional equations originated from the well-known Ulam problem [14], concerning the stability of homomorphisms in metric groups: Under what conditions does there exist an additive mapping near an approximately additive mapping? Hyers [5] gave a first affirmative partial answer to the question of Ulam for Banach spaces.

Theorem 1.1 ([5]). Let X_{1} and X_{2} be Banach spaces and the function $f: X_{1} \rightarrow X_{2}$ satisfies

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon
$$

for all $x, y \in X_{1}$ and some $\varepsilon>0$. Then there exists a unique additive mapping $T: X_{1} \rightarrow X_{2}$ such that $\|f(x)-T(x)\| \leq \varepsilon$ for all $x \in X_{1}$.

[^0]After Hyers' result many papers dedicated to this topic, extending the Ulam problem to other functional equations and generalizing Hyers' result in various directions, were published. A new direction of research in the stability theory of functional equations, called today Hyers-Ulam stability, was opened by the papers of Aoki and Rassias by considering instead of $\varepsilon>0$ in the above theorem, an unbounded function depending on x and $y[1,11]$:

Theorem 1.2 ([11]). Let X_{1} be a normed space and X_{2} a Banach space. Let $f: X_{1} \rightarrow X_{2}$ satisfy the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X_{1}$, where $\theta>0$ and $p \in[0,1)$. Then there exists a unique additive mapping $A: X_{1} \rightarrow X_{2}$ such that $\|f(x)-A(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}$ for all $x \in X_{1}$.

This exciting result of Rassias attracted a number of mathematicians who began to be stimulated to investigate the stability problems of functional equations. By regarding a large influence of S.M. Ulam, D.H. Hyers, and Th.M. Rassias on the study of stability problems of functional equations, the stability phenomenon proved by Th.M. Rassias is called the Hyers-Ulam-Rassias (HUR for short) stability.

Many mathematicians have extensively investigated the subjects on the HUR-stability. Several books cover and offer almost all classical results on the HUR-stability in an integrated and selfcontained fashion $[6,8,7]$.

If we look at the many of famous functional equation such as additive Cauchy equation, generalized additive Cauchy equations, exponential equation and logarithmic equation (see [8]), we find that they are satisfied in the following general equation:

$$
\begin{equation*}
f\left(\varphi_{1}(x, y)\right)=\varphi_{2}(f(x), f(y)) \tag{1.1}
\end{equation*}
$$

where $\varphi_{i}: X_{i} \times X_{i} \rightarrow X_{i}$ is given function for $i=1,2, f: X_{1} \rightarrow X_{2}$ is unknown function, X_{1} is a set and X_{2} is a complete metric space. The functional equation (1.1) has been appeared in [4]. The existence of solutions (1.1) and a generalization of Hyers' Theorem is investigated by Forti in [3]. He proved, under certain hypothesis on φ_{1} and φ_{2}, that the existence of solution of the functional inequality

$$
d\left(f\left(\varphi_{1}(x, y)\right), \varphi_{2}(f(x), f(y))\right) \leq \beta(x, x)
$$

where $\beta: X \times X \rightarrow[0,+\infty)$ is a suitable function, implies the existence of a solution of the Eq. (1.1). This means that the Eq. (1.1) has HUR-stability. For the convenience of the reader, the Forti' theorem is stated here. Our notation is slightly different from that of [3].

Let $\varphi_{i}: X_{i} \times X_{i} \rightarrow X_{i}$ is given function for $i=1,2, f: X_{1} \rightarrow X_{2}$ is the unknown function, X_{1} is a set and (X_{2}, d) is a complete metric space. Forti [3] proved, under certain hypotheses on φ_{1}, φ_{2}, that the existence of a solution of the functional inequality (1.1) where $\beta: X \times X \rightarrow \mathbb{R}^{+}$is a suitable functions, implies the existence of a solution of the Eq. (1.1). Consider the functional equation (1.1). We put $T_{i}(x)=\varphi_{i}(x, x)$ for $i=1,2$ and assume that T_{2} is invertible. For a nonnegative integer n, T_{i}^{n} will denote the n-th iterates of T_{i} and T_{2}^{-n} denotes the n-th iterate of T_{2}^{-1}. For every $x \in X_{i}$, we define $x^{0}=x$ and $x^{n}=T_{i}^{n} x$ for $i=1,2$. For every $f: X_{1} \rightarrow X_{2}$ and $x, y \in X_{1}$, we set

$$
\beta(x, y)=d\left(f\left(\varphi_{1}(x, y)\right), \varphi_{2}(f(x), f(y))\right)
$$

https://daneshyari.com/en/article/4672886

Download Persian Version:
https://daneshyari.com/article/4672886

Daneshyari.com

[^0]: * Tel.: +98 9177363820.

 E-mail addresses: hrezaei81@gmail.com, rezaei@mail.yu.ac.ir.
 0019-3577/\$ - see front matter © 2013 Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
 http://dx.doi.org/10.1016/j.indag.2013.05.003

