On a combinatorial sum

Horst Alzer

Morsbacher Str. 10, 51545 Waldbröl, Germany

Received 18 August 2014; received in revised form 23 February 2015; accepted 25 February 2015
Communicated by T.H. Koornwinder

Abstract

Let $$
P_{n}(x)=(1-x)^{n+1} \sum_{k=0}^{n}\binom{n+k}{k} x^{k} .
$$

We determine all real numbers x such that the sequence $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is concave, convex, and completely monotonic, respectively.
© 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Combinatorial sum; Concave; Convex; Completely monotonic; Psi function

1. Introduction

We define the polynomial $P_{m, n}$ by

$$
\begin{equation*}
P_{m, n}(x)=(1-x)^{n+1} \sum_{k=0}^{m}\binom{n+k}{k} x^{k}, \tag{1.1}
\end{equation*}
$$

where m and n are non-negative integers. The elegant formula

$$
\begin{equation*}
P_{m, n}(x)+P_{n, m}(1-x)=1 \tag{1.2}
\end{equation*}
$$

[^0]which is known as identity of Chaundy and Bullard, was published in 1960; see [5]. A survey of different proofs of (1.2) as well as interesting historical comments on this subject can be found in [8] and [9]. Among others, the authors point out in [9] that identity (1.2) already was given implicitly in 1713 by Mountmort.

Here, we study (1.1) for the special case $m=n$ and set

$$
P_{n}(x)=P_{n, n}(x)=\sum_{k=0}^{2 n+1} c_{k, n} x^{k}
$$

with

$$
c_{k, n}=\sum_{\substack{\mu+v=k \\ 0 \leq \mu \leq n+1 ; 0 \leq \nu \leq n}}(-1)^{\mu}\binom{n+1}{\mu}\binom{n+v}{n} .
$$

The work on this paper has been inspired by a recently published article by Aharonov and Elias [2], who use a linear differential equation of the first order to establish the representation

$$
\begin{equation*}
P_{n}(x)=\frac{\int_{x}^{1} t^{n}(1-t)^{n} d t}{B(n+1, n+1)} \tag{1.3}
\end{equation*}
$$

where

$$
B(a, b)=\int_{0}^{1} t^{a-1}(1-t)^{b-1} d t
$$

denotes Euler's beta function. Aharonov and Elias apply (1.3) to obtain a new proof for the well-known identity

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n+k}{n} 2^{-k}=2^{n} \tag{1.4}
\end{equation*}
$$

In fact, putting $x=1 / 2$ in (1.3) leads to (1.4).
In what follows we study further properties of $P_{n}(x)$. More precisely, we answer the following questions.
(I) For which real numbers x is the sequence $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ concave and for which x is this sequence convex?
(II) For which real numbers x is the sequence $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ completely monotonic?

We recall that a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is said to be completely monotonic if

$$
(-1)^{k} \Delta^{k} a_{n} \geq 0 \quad \text { for } n, k=0,1,2, \ldots
$$

where

$$
\Delta^{0} a_{n}=a_{n}, \quad \Delta^{k} a_{n}=\Delta^{k-1} a_{n+1}-\Delta^{k-1} a_{n} \quad(n=0,1,2, \ldots ; k=1,2, \ldots)
$$

A result of Hausdorff states that $\left\{a_{n}\right\}_{n=0}^{\infty}$ is completely monotonic if and only if there exists a bounded non-decreasing function $b(t), 0 \leq t \leq 1$, such that

$$
a_{n}=\int_{0}^{1} t^{n} d b(t) \quad \text { for } n=0,1,2, \ldots
$$

see [13, p. 108].

https://daneshyari.com/en/article/4672905

Download Persian Version:
https://daneshyari.com/article/4672905

Daneshyari.com

[^0]: E-mail address: h.alzer@gmx.de.

