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a b s t r a c t

We provide for generalized linear regression models that use natural cubic splines to model

predictors an S-Plus function to calculate relative risks (RR), log relative risk (log RR), mean

percent change (MPC) for continuous covariates modeled using a logarithmic link as well as

adjusted means differences (MD) for the identity link. The function makes explicit use of the

natural spline basis functions, the estimated coefficients for each natural spline basis func-

tion, and the fitted correlation matrix for the estimated coefficients and can thus accommo-

date any number of degrees of freedom. The main function produces a publication–quality

graph of all of these quantities as compared to a user-specified reference value as well as the

associated confidence limits. In another function, specific values of these statistics compar-

ing a vector of values of the independent variable to the reference value can be calculated

rather than plotted.

© 2006 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Modern statistical analysis of data arising from epidemiologic
studies make extensive use of multiple regression techniques
to estimate associations between the dependent and explana-
tory variables [1,2]. Regression models incorporated in the
generalized linear models (GLM) [3] provide estimates of the
association between various types of dependent and indepen-
dent variables while accounting for the effects of covariates
that may confound the associations under study. For contin-
uous independent variables, researchers have relied generally
on parametric representations to model effects. For example,
it is often assumed that the relationship between a covari-
ate and the outcome variable is a linear function. If the data
are not expected to follow the assumed linear relationship,
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then some simple parametric transformations of the inde-
pendent variable are often considered [4]. The limitation of
estimable relationships to a few parametric curves may lead
to bias, loss of efficiency, or incorrect conclusions [5–8]. An
alternative strategy to avoid the linearity assumption is to sim-
ply break the range of the continuous variable into categories
and then fit the model using the newly created categorical
variable [4,2]. This method also entails a loss of information
and can introduce considerable misclassification, especially if
the selected cutpoints do not follow the empirical response
function [9,1,10–13]. In addition, selecting cutpoints to opti-
mize the fit results in a systematic over-estimation of the
covariate effect and inflates the type I error of testing the
hypothesis of no association [14,15]. Similar strategies are also
taken while modeling the effects of continuous confounding
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variables, with the result that the estimated association may
be biased if its confounding effects are not removed entirely
[1,16].

Numerous investigators have recognized these issues and
consequently have developed methods that allow the analyst
a number of interesting options to both visualize response
functions as well as obtain quantitative estimates of associa-
tion, including parametric natural cubic splines [17], penalized
splines [18], and a range of non-parametric smoothers incor-
porated within the context of the generalized additive models
(GAM) framework [6].

The GAM models gained considerable use in the 1990s in
the air pollution field, where non-parametric smoothers were
used to filter time series of mortality (in order to remove
unwanted long-term variations in the dependent series and to
remove serial autocorrelation and overdispersion) [19] as well
as to characterize non-linear response functions. However, a
few years ago, it was discovered that the backfitting algorithm
used to maximize these GAMs did not converge appropriately
and did not account adequately for non-linearities between
explanatory variables (concurvity), with the result that the
estimates of effect were biased and the standard errors were
underestimated [20–22]. Although the former problem has
been fixed satisfactorily, but not the problem with bias in the
parameter estimates, we and our colleagues [23,24] and other
investigators have replaced the non-parametric smoothers in
the GAMs with natural cubic splines.

In interpreting the findings from analyses that show non-
linear response functions, it is useful to present the results
in graphical or tabular format so that the estimates of effect
across a range of values of the independent variable are com-
pared to one common reference value. For the GAMs, Saez et
al. developed an S-Plus function that can be used for this pur-
pose [25]. Following their lead, we have developed two anal-
ogous S-Plus functions when natural cubic splines are used
in a GLM that uses a logarithmic link function or the identity
link.

2. The calculation of relative risks from
models incorporating natural cubic splines

A piecewise cubic spline S(x) on the interval [a, b] is a con-
tinuous piecewise curve with cubic functions Sk(x) on each
interval [xk, xk+1], its first and second derivatives are all con-
tinuous on [a, b], where a = x0 < x1 < . . . < xn = b, and x0, x1, . . ., xn

are called knots or break points. A natural spline is a piecewise
cubic spline when its second derivative is 0 at the boundary
points [a, b]. Generally, if we have n + 1 knots (including bound-
ary points), we can construct n natural spline basis functions
which are orthogonal with each other, and any spline function
defined by these knots can be expressed as a linear combina-
tion of these basis functions. Here n is called the number of
degrees of freedom (df) of the natural spline.

Definition 2.1. Suppose we have knots x0, x1, . . ., xn, where
a = x0 < x1 < . . . < xn = b, then the function S(x) on [a, b] is called
a natural spline defined by these knots, if there exist n cubic
polynomials Sk(x) with coefficients sk0, sk1, sk2, and sk3 that
satisfy the following six conditions:

1 S(x) = Sk(x) = sk0 + sk1(x − xk) + sk2(x − xk)2 + sk3(x − xk)3

where x ∈ [xk−1, xk], for k = 1, · · ·, n

2 Sk(xk) = Sk+1(xk), for k = 1, · · ·, n − 1

3 S′
k
(xk) = S′

k+1(xk), for k = 1, · · ·, n − 1

4 S′′
k
(xk) = S′′

k−1(xk), for k = 1, · · ·, n − 1

5 S(a) = 0

6 S′′(a) = S′′(b)

(1)

The GLM function using natural splines can be expressed
as:

E(g(Y)) = ˛ + c1S1(x) + c2S2(x) + · · · + cnSn(x) (2)

where Y is the dependent variable (for normally distributed
data it will be a continuous variable, for Poisson data it will
be either counts or rates, and for a logistic model it will repre-
sent the odds of developing the outcome), g(.) the link function
(identity or the natural logarithm), ˛ the intercept, Si(x), i = 1,
2, . . ., n natural splines, ci, i = 1, 2, . . ., n the associated regres-
sion coefficients, and n is the df of natural splines. We assume
that the intercept of the natural spline on the left most knot
is equal to zero (condition 5 in Eq. (1)).

For the identity link, the adjusted mean difference is

M̂D(x, xref) =
n∑

i=1

ĉi[Si(x) − Si(xref)] (3)

and for the log link, the ratio of the outcome variable (often
referred to as the relative risk, RR) for a predictor x with respect
to xref is estimated as

R̂R(x, xref) = exp

{
n∑

i=1

ĉi[Si(x) − Si(xref)]

}
(4)

where xref is a reference value of the predictor, and ĉi, i = 1, 2,
. . ., n are the estimated regression coefficients from the GLM.
Another formulation used, when the RR is small, is to express
it as a mean percent change (MPC):

̂MPC(x, xref) = exp

{
n∑

i=1

ĉi[Si(x) − Si(xref)] − 1

}
× 100%. (5)

The asymptotic distribution of M̂D(x, xref) is

N(MD(x, xref), �2
MD)

and for log R̂R(x, xref), it is

N(log RR(x, xref), �2
log RR)

where

�2
MD = Var(M̂D(x, xref)) = [S(x) − S(xref)]

′Cov(Ĉ)[S(x) − S(xref)],

(6)

�2
log RR = Var(log R̂R(x, xref)) = [S(x)− S(xref)]

′Cov(Ĉ)[S(x)− S(xref)],

(7)
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