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Abstract

The goal of this note is to prove a law of large numbers for the empirical speed of a green particle that
performs a random walk on top of a field of red particles which themselves perform independent simple
random walks on Zd , d ≥ 1. The red particles jump at rate 1 and are in a Poisson equilibrium with density
µ. The green particle also jumps at rate 1, but uses different transition kernels p′ and p′′ depending on
whether it sees a red particle or not. It is shown that, in the limit as µ → ∞, the speed of the green particle
tends to the average jump under p′. This result is far from surprising, but it is non-trivial to prove. The proof
that is given in this note is based on techniques that were developed in Kesten and Sidoravicius (2005) to
deal with spread-of-infection models. The main difficulty is that, due to particle conservation, space–time
correlations in the field of red particles decay slowly. This places the problem in a class of random walks in
dynamic random environments for which scaling laws are hard to obtain.
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1. Introduction and background

1.1. Model and main theorem

We consider a green particle that performs a continuous-time random walk on Zd , d ≥ 1,
under the influence of a field of red particles which themselves perform independent continuous-
time simple random walks jumping at rate 1, constituting a dynamic random environment. The
latter is denoted by

N = (N (t))t≥0 with N (t) = {N (x, t): x ∈ Zd
}, (1.1)

where N (x, t) ∈ N0 = N ∪ {0} is the number of red particles at site x at time t . As initial state
we take N (0) = {N (x, 0): x ∈ Zd

} to be i.i.d. Poisson random variables with mean µ. As is well
known, this makes N invariant under translations in space and time.

Also the green particle jumps at rate 1, however, our assumption is that the jump is drawn
from two different random walk transition kernels p′ and p′′ on Zd depending on whether the
space–time point of the jump is occupied by a red particle or not. We assume that p′ and p′′ have
finite range, and write

v′
=


x∈Zd

xp′(0, x), v′′
=


x∈Zd

xp′′(0, x), (1.2)

to denote their mean. We write

G = (G(t))t≥0 (1.3)

to denote the path of the green particle with G(0) = 0, and write Pµ to denote the joint law of
N and G. Our main result is the following asymptotic weak law of large numbers (∥ · ∥ is the
Euclidean norm on Rd ).

Theorem 1.1. For every ε > 0,

lim
µ→∞

lim sup
t→∞

Pµ
{∥t−1 G(t) − v′

∥ > ε} = 0. (1.4)

1.2. Discussion

The result in Theorem 1.1 is far from surprising. As µ → ∞, at any given time the fraction of
sites occupied by red particles tends to 1. Therefore we may expect that the fraction of time the
green particle sees a red particle tends to 1 also. Consequently, we may expect the green particle
to almost satisfy a weak law of large numbers corresponding to the transition kernel p′, as if it
were seeing a red particle always. Despite this simple intuition, the result in Theorem 1.1 seems
non-trivial to prove. The proof in the present note relies on techniques developed in [11] to deal
with spread-of-infection models.

The key problem is to show that for large µ the green particle is unlikely to spend an
appreciable amount of time in the rare space–time holes of the field of red particles. To see
why this is non-trivial, consider the case d = 1 with two nearest-neighbor transition kernels p′

and p′′ of the form

p′(0, 1) = p = p′′(0, −1), p′(0, −1) = 1 − p = p′′(0, 1), p ∈


1
2 , 1


, (1.5)
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