On the approximation by three consecutive continued fraction convergents

Hendrik Jager ${ }^{\text {a }}$, Jaap de Jonge ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Oude Larenseweg 26, 7214 PC Epse, The Netherlands
b Von Zesenstraat 172, 1093 BJ Amsterdam, The Netherlands

Abstract

Denote by $p_{n} / q_{n}, n=1,2,3, \ldots$, the sequence of continued fraction convergents of the real irrational number x. Define the sequence of approximation coefficients by $\theta_{n}:=q_{n}\left|q_{n} x-p_{n}\right|, n=1,2,3, \ldots$ A laborious way of determining the mean value of the sequence $\left|\theta_{n+1}-\theta_{n-1}\right|, n=2,3, \ldots$, is simplified. The method involved also serves for showing that for almost all x the pattern $\theta_{n-1}<\theta_{n}<\theta_{n+1}$ occurs with the same asymptotic frequency as the pattern $\theta_{n+1}<\theta_{n}<\theta_{n-1}$, namely $0.12109 \cdots$. All the four other patterns have the same asymptotic frequency $0.18945 \cdots$. The constants are explicitly given. (c) 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Continued fractions; Metric theory

1. Introduction

Let $x \in \Omega:=[0,1] \backslash \mathbb{Q}$ have the continued fraction expansion

$$
x=\left[0 ; a_{1}, a_{2}, \ldots\right]
$$

and let $p_{n} / q_{n}, n=1,2,3, \ldots$, be the corresponding sequence of convergents. The sequence θ_{n}, $n=1,2,3, \ldots$, of approximation coefficients of x is defined by

$$
\theta_{n}(x):=q_{n}^{2}\left|x-\frac{p_{n}}{q_{n}}\right|, \quad n=1,2,3, \ldots
$$

[^0]In our notation we will omit the dependence of θ_{n} on x. An important aspect of the approximation by continued fractions is the fact that

$$
0<\theta_{n}<1, \quad n=1,2,3, \ldots
$$

The sequence has been studied extensively; see for instance [2, Chapter 5].
Let the operator $T: \Omega \rightarrow \Omega$ be defined by

$$
T x:=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor .
$$

Since for $x=\left[0 ; a_{1}, a_{2}, a_{3}, \ldots\right]$ we have $T x=\left[0 ; a_{2}, a_{3}, \ldots\right], T$ is called the one-sided shift operator connected with the continued fraction, also known as the Gauss operator.

Now let $\bar{\Omega}:=\Omega \times[0,1]$ and $x=\left[0 ; a_{1}, a_{2}, \ldots\right]$. The natural extension of T is the two-sided shift operator $\mathfrak{T}: \bar{\Omega} \rightarrow \bar{\Omega}$, defined by

$$
\mathfrak{T}(x, y):=\left(T x, \frac{1}{y+a_{1}}\right)=\left(\frac{1}{x}-a_{1}, \frac{1}{y+a_{1}}\right) .
$$

In particular, \mathfrak{T} is measure-preserving with regard to the measure m with density function μ, where

$$
\begin{equation*}
\mu(x, y):=\frac{1}{\log 2} \cdot \frac{1}{(1+x y)^{2}} . \tag{1}
\end{equation*}
$$

We define

$$
\left(t_{n}, v_{n}\right):=\mathfrak{T}^{n}(x, 0), \quad n \geq 1
$$

that is

$$
t_{n}=\left[0 ; a_{n+1}, a_{n+2}, \ldots\right]
$$

and

$$
v_{n}=\left[0 ; a_{n}, a_{n-1}, \ldots, a_{1}\right]=\frac{q_{n-1}}{q_{n}} .
$$

Beside the well-known relations (see e.g. [5, p. 25])

$$
\begin{equation*}
\theta_{n-1}=\frac{v_{n}}{1+t_{n} v_{n}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{n}=\frac{t_{n}}{1+t_{n} v_{n}} \tag{3}
\end{equation*}
$$

we will need the relation

$$
\begin{equation*}
\theta_{n+1}=\frac{\left(1-a_{n+1} t_{n}\right)\left(a_{n+1}+v_{n}\right)}{1+t_{n} v_{n}} \tag{4}
\end{equation*}
$$

see [2, Proposition 5.3.6].
In this section we will prove various arithmetical properties of \mathfrak{T}, from which we will later deduce some metrical results on triples of three consecutive approximation coefficients.

https://daneshyari.com/en/article/4672994

Download Persian Version:
https://daneshyari.com/article/4672994

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: epserbos@upcmail.nl (H. Jager), c.j.dejonge@uva.nl, j.dejonge @ felisenum.nl (J. de Jonge).

