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Abstract

We present a new derivation of the formula appearing in Babenko (1978) and Mayer and Roepstorff
(1987) that gives the probability distribution of τ−n in terms of the eigenvalues of a symmetric operator.
Here τ is the well-known Gauss-map.
c⃝ 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

The theory of continued fractions is built on the Gauss-transformation τ , defined as

τ (x) =


{1/x} if x ∈ I = [0, 1] , x ≠ 0,
0 if x = 0,

where {·} denotes the fractional part.
The probability measure γ (A) =

1
log 2


A

dx
x+1 , A ∈ B I = the collection of Borel sets in I ,

known as the Gauss measure, is τ -invariant, i.e., γ τ−1
= γ , to mean γ (τ−1(A)) = γ (A) for

any A ∈ B I . Denote by [·] the integer part. Define a1(x) =


1
x


, x ∈ (0, 1], a1(0) = ∞, and

an(x) = a1(τ
n−1(x)), x ∈ I, n ∈ N = {1, 2, . . .}, with τ 0

= id. Then

x =
1

[1/x] + {1/x}
=

1
a1(x)+ τ(x)
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for any x ∈ I . Hence

τ (x) =
1

a1 (τ (x))+ τ (τ (x))
=

1

a2 (x)+ τ 2 (x)

and thus

x =
1

a1 (x)+
1

a2 (x)+ τ 2 (x)

.

Continuing in this manner we obtain

x =
1

a1 (x)+
1

a2 (x)+
1

a3 (x)+ . . .
+

1
an (x)+ τ n (x)

for any x ∈ I and n ∈ N.
This is the continued fraction expansion of x ∈ I . When x is a rational number there exists an

integer n ∈ N such that τm (x) = 0 for any m ≥ n. In this case the continued fraction of x con-
tains a finite number of finite incomplete quotients a1 (x) , a2 (x) , . . .. We shall use the notation
x = [a1 (x) , a2 (x) , . . .] for the number x with incomplete quotients a1 (x) , a2 (x) , . . . .

Clearly, by the equation γ τ−1
= γ , the sequence (an)n∈N is a strictly stationary one when

we place the Gauss measure γ on B I . It is possible to give a representation of the incom-
plete quotients as a doubly infinite sequence as follows. For (x, y) ∈ I × I put ān(x, y) =

an(x), ā0(x, y) = a1(y), ā−n(x, y) = an+1(y), n ∈ N. Then the doubly infinite sequence
(āl)l∈Z,Z = (. . . ,−2,−1, 0, 1, 2, . . .), is a doubly infinite version of (an)n∈N on the probability
space (I × I,B I×I , γ̄ ) where γ̄ is the probability measure with density 1

(xy+1)2 log 2
, x, y ∈ I .

Remark that, in fact, we are dealing with the natural extension of the dynamical system underly-
ing the one-dimensional system of the regular continued fraction expansion. See [3, Subsection
1.3.1 and p. 31]. We have

γ̄ ([0, u] × I |ā0, ā−1, . . .) =
(a + 1) u

au + 1
, u ∈ I, γ̄ -a.e., (1)

where a = [ā0, ā−1, . . .]. See [3, Theorem 1.3.5].
In the next section we introduce the Perron–Frobenius operator of τ under γ̄ . In Sections 5

and 6 we will show that a spectral decomposition of it does exist.

2. The Perron–Frobenius operator of τ

The Perron–Frobenius operator of τ under a probability measure µ on B I such that µ

τ−1

(A)


= 0 whenever µ (A) = 0 is defined as the bounded linear operator Pµ on L1
µ (I ) which

takes f ∈ L1
µ (I ) into Pµ f ∈ L1

µ (I ) with
A

Pµφdµ =


τ−1(A)

φdµ
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