

Available online at www.sciencedirect.com

indagationes mathematicae

Indagationes Mathematicae 25 (2014) 825-831

www.elsevier.com/locate/indag

Spectral analysis for the Gauss problem on continued fractions

Marius Iosifescu

Romanian Academy, "Gheorghe Mihoc–Caius Iacob" Institute of Mathematical Statistics and Applied Mathematics, Calea 13 Septembrie 13, 050711 Bucharest, Romania

Abstract

We present a new derivation of the formula appearing in Babenko (1978) and Mayer and Roepstorff (1987) that gives the probability distribution of τ^{-n} in terms of the eigenvalues of a symmetric operator. Here τ is the well-known Gauss-map.

© 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Continued fraction; The Gauss problem; Perron-Frobenius operator

1. Introduction

The theory of continued fractions is built on the Gauss-transformation τ , defined as

$$\tau (x) = \begin{cases} \{1/x\} & \text{if } x \in I = [0, 1], \ x \neq 0 \\ 0 & \text{if } x = 0, \end{cases}$$

where $\{\cdot\}$ denotes the fractional part.

The probability measure $\gamma(A) = \frac{1}{\log 2} \int_A \frac{dx}{x+1}$, $A \in \mathcal{B}_I$ = the collection of Borel sets in *I*, known as the Gauss measure, is τ -invariant, i.e., $\gamma \tau^{-1} = \gamma$, to mean $\gamma(\tau^{-1}(A)) = \gamma(A)$ for any $A \in \mathcal{B}_I$. Denote by [·] the integer part. Define $a_1(x) = \left[\frac{1}{x}\right]$, $x \in (0, 1]$, $a_1(0) = \infty$, and $a_n(x) = a_1(\tau^{n-1}(x))$, $x \in I$, $n \in \mathbb{N} = \{1, 2, \ldots\}$, with $\tau^0 = \text{id}$. Then

$$x = \frac{1}{[1/x] + \{1/x\}} = \frac{1}{a_1(x) + \tau(x)}$$

E-mail address: miosifes@racai.ro.

http://dx.doi.org/10.1016/j.indag.2014.02.007

0019-3577/© 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

for any $x \in I$. Hence

$$\tau(x) = \frac{1}{a_1(\tau(x)) + \tau(\tau(x))} = \frac{1}{a_2(x) + \tau^2(x)}$$

and thus

$$x = \frac{1}{a_1(x) + \frac{1}{a_2(x) + \tau^2(x)}}.$$

Continuing in this manner we obtain

$$x = \frac{1}{a_1(x) + \frac{1}{a_2(x) + \frac{1}{a_3(x) + \dots + \frac{1}{a_n(x) + \tau^n(x)}}}}$$

for any $x \in I$ and $n \in \mathbb{N}$.

This is the continued fraction expansion of $x \in I$. When x is a rational number there exists an integer $n \in \mathbb{N}$ such that $\tau^m(x) = 0$ for any $m \ge n$. In this case the continued fraction of x contains a finite number of finite incomplete quotients $a_1(x), a_2(x), \ldots$. We shall use the notation $x = [a_1(x), a_2(x), \ldots]$ for the number x with incomplete quotients $a_1(x), a_2(x), \ldots$.

Clearly, by the equation $\gamma \tau^{-1} = \gamma$, the sequence $(a_n)_{n \in \mathbb{N}}$ is a strictly stationary one when we place the Gauss measure γ on \mathcal{B}_I . It is possible to give a representation of the incomplete quotients as a doubly infinite sequence as follows. For $(x, y) \in I \times I$ put $\bar{a}_n(x, y) =$ $a_n(x), \bar{a}_0(x, y) = a_1(y), \bar{a}_{-n}(x, y) = a_{n+1}(y), n \in \mathbb{N}$. Then the doubly infinite sequence $(\bar{a}_l)_{l \in \mathbb{Z}}, \mathbb{Z} = (\ldots, -2, -1, 0, 1, 2, \ldots)$, is a doubly infinite version of $(a_n)_{n \in \mathbb{N}}$ on the probability space $(I \times I, \mathcal{B}_{I \times I}, \bar{\gamma})$ where $\bar{\gamma}$ is the probability measure with density $\frac{1}{(xy+1)^2 \log 2}, x, y \in I$. Remark that, in fact, we are dealing with the natural extension of the dynamical system underlying the one-dimensional system of the regular continued fraction expansion. See [3, Subsection 1.3.1 and p. 31]. We have

$$\bar{\gamma}([0, u] \times I | \bar{a}_0, \bar{a}_{-1}, \ldots) = \frac{(a+1)u}{au+1}, \quad u \in I, \bar{\gamma}\text{-a.e.},$$
(1)

where $a = [\bar{a}_0, \bar{a}_{-1}, ...]$. See [3, Theorem 1.3.5].

In the next section we introduce the Perron–Frobenius operator of τ under $\bar{\gamma}$. In Sections 5 and 6 we will show that a spectral decomposition of it does exist.

2. The Perron–Frobenius operator of τ

The Perron–Frobenius operator of τ under a probability measure μ on \mathcal{B}_I such that $\mu(\tau^{-1}(A)) = 0$ whenever $\mu(A) = 0$ is defined as the bounded linear operator P_{μ} on $L^1_{\mu}(I)$ which takes $f \in L^1_{\mu}(I)$ into $P_{\mu}f \in L^1_{\mu}(I)$ with

$$\int_A P_\mu \phi \mathrm{d}\mu = \int_{\tau^{-1}(A)} \phi \mathrm{d}\mu$$

826

Download English Version:

https://daneshyari.com/en/article/4672995

Download Persian Version:

https://daneshyari.com/article/4672995

Daneshyari.com