Spectral analysis for the Gauss problem on continued fractions

Marius Iosifescu

Romanian Academy, "Gheorghe Mihoc-Caius Iacob" Institute of Mathematical Statistics and Applied Mathematics, Calea 13 Septembrie 13, 050711 Bucharest, Romania

Abstract

We present a new derivation of the formula appearing in Babenko (1978) and Mayer and Roepstorff (1987) that gives the probability distribution of τ^{-n} in terms of the eigenvalues of a symmetric operator. Here τ is the well-known Gauss-map. © 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Continued fraction; The Gauss problem; Perron-Frobenius operator

1. Introduction

The theory of continued fractions is built on the Gauss-transformation τ, defined as

$$
\tau(x)= \begin{cases}\{1 / x\} & \text { if } x \in I=[0,1], x \neq 0, \\ 0 & \text { if } x=0,\end{cases}
$$

where $\{\cdot\}$ denotes the fractional part.
The probability measure $\gamma(A)=\frac{1}{\log 2} \int_{A} \frac{\mathrm{~d} x}{x+1}, A \in \mathcal{B}_{I}=$ the collection of Borel sets in I, known as the Gauss measure, is τ-invariant, i.e., $\gamma \tau^{-1}=\gamma$, to mean $\gamma\left(\tau^{-1}(A)\right)=\gamma(A)$ for any $A \in \mathcal{B}_{I}$. Denote by [•] the integer part. Define $a_{1}(x)=\left[\frac{1}{x}\right], x \in(0,1], a_{1}(0)=\infty$, and $a_{n}(x)=a_{1}\left(\tau^{n-1}(x)\right), x \in I, n \in \mathbb{N}=\{1,2, \ldots\}$, with $\tau^{0}=$ id. Then

$$
x=\frac{1}{[1 / x]+\{1 / x\}}=\frac{1}{a_{1}(x)+\tau(x)}
$$

[^0]for any $x \in I$. Hence
$$
\tau(x)=\frac{1}{a_{1}(\tau(x))+\tau(\tau(x))}=\frac{1}{a_{2}(x)+\tau^{2}(x)}
$$
and thus
$$
x=\frac{1}{a_{1}(x)+\frac{1}{a_{2}(x)+\tau^{2}(x)}} .
$$

Continuing in this manner we obtain

$$
x=\frac{1}{a_{1}(x)+\frac{1}{a_{2}(x)+\frac{1}{a_{3}(x)+}} \cdot} \begin{aligned}
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& a_{n}(x)+\tau^{n}(x)
\end{aligned}
$$

for any $x \in I$ and $n \in \mathbb{N}$.
This is the continued fraction expansion of $x \in I$. When x is a rational number there exists an integer $n \in \mathbb{N}$ such that $\tau^{m}(x)=0$ for any $m \geq n$. In this case the continued fraction of x contains a finite number of finite incomplete quotients $a_{1}(x), a_{2}(x), \ldots$. We shall use the notation $x=\left[a_{1}(x), a_{2}(x), \ldots\right]$ for the number x with incomplete quotients $a_{1}(x), a_{2}(x), \ldots$

Clearly, by the equation $\gamma \tau^{-1}=\gamma$, the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a strictly stationary one when we place the Gauss measure γ on \mathcal{B}_{I}. It is possible to give a representation of the incomplete quotients as a doubly infinite sequence as follows. For $(x, y) \in I \times I$ put $\bar{a}_{n}(x, y)=$ $a_{n}(x), \bar{a}_{0}(x, y)=a_{1}(y), \bar{a}_{-n}(x, y)=a_{n+1}(y), n \in \mathbb{N}$. Then the doubly infinite sequence $\left(\bar{a}_{l}\right)_{l \in \mathbb{Z}}, \mathbb{Z}=(\ldots,-2,-1,0,1,2, \ldots)$, is a doubly infinite version of $\left(a_{n}\right)_{n \in \mathbb{N}}$ on the probability space $\left(I \times I, \mathcal{B}_{I \times I}, \bar{\gamma}\right)$ where $\bar{\gamma}$ is the probability measure with density $\frac{1}{(x y+1)^{2} \log 2}, x, y \in I$. Remark that, in fact, we are dealing with the natural extension of the dynamical system underlying the one-dimensional system of the regular continued fraction expansion. See [3, Subsection 1.3.1 and p. 31]. We have

$$
\begin{equation*}
\bar{\gamma}\left([0, u] \times I \mid \bar{a}_{0}, \bar{a}_{-1}, \ldots\right)=\frac{(a+1) u}{a u+1}, \quad u \in I, \bar{\gamma} \text {-a.e. }, \tag{1}
\end{equation*}
$$

where $a=\left[\bar{a}_{0}, \bar{a}_{-1}, \ldots\right]$. See [3, Theorem 1.3.5].
In the next section we introduce the Perron-Frobenius operator of τ under $\bar{\gamma}$. In Sections 5 and 6 we will show that a spectral decomposition of it does exist.

2. The Perron-Frobenius operator of τ

The Perron-Frobenius operator of τ under a probability measure μ on \mathcal{B}_{I} such that $\mu\left(\tau^{-1}\right.$ $(A))=0$ whenever $\mu(A)=0$ is defined as the bounded linear operator P_{μ} on $L_{\mu}^{1}(I)$ which takes $f \in L_{\mu}^{1}(I)$ into $P_{\mu} f \in L_{\mu}^{1}(I)$ with

$$
\int_{A} P_{\mu} \phi \mathrm{d} \mu=\int_{\tau^{-1}(A)} \phi \mathrm{d} \mu
$$

https://daneshyari.com/en/article/4672995

Download Persian Version:

https://daneshyari.com/article/4672995

Daneshyari.com

[^0]: E-mail address: miosifes@racai.ro.

